月旦知識庫
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫學   財經   社會學   教育   其他 大陸期刊   核心   非核心 DOI文章
篇名
Deep Learning Based Anomaly Detection
並列篇名
Deep Learning Based Anomaly Detection
作者 Le SunJinyuan HeXiaoxia YinYanchun ZhangJeon-Hor ChenTomas KronMin-Ying Su
中文摘要
Magnetic resonance imaging (MRI) has been a prevalence technique for breast cancer diagnosis. This paper introduces a semi-supervised method for extracting breast tumors in a set of real MRIs of different types of breast cancer patients. We call the proposed method as Semi-supervised Tumor Segmentation (SSTS), and apply it to both mass and non-mass lesions. We have trained 225 classifiers with respect to different settings of threshold parameters that need to be set in SSTS. We will show the performance of SSTS for extracting the infiltrating ductal carcinoma (IDC) and the ductal carcinoma in situ (DCIS) tumors based on a set of real MRIs of 21 breast cancer patients; and how different settings of the parameters will influence the extraction results. We additionally implement five state-of-the-art intensity-based image segmentation algorithms that can be compared with SSTS on breast tumor extraction.
起訖頁 148-157
關鍵詞 breast tumorimage segmentationMRIsemi-supervised learning
刊名 電腦學刊  
期數 201812 (29:6期)
該期刊-上一篇 Efficient Least Squares Regression Algorithm for Autonomous Maneuvering UAV System
該期刊-下一篇 A Safe and Efficient Storage Scheme Based on BlockChain and IPFS for Agricultural Products Tracking
 

新書閱讀



最新講座


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄