月旦知識庫
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫學   財經   社會學   教育   其他 大陸期刊   核心   非核心 DOI文章
篇名
Proximal Support Vector Machine with Mixed Norm
並列篇名
Proximal Support Vector Machine with Mixed Norm
作者 Zhi LiJun-Yan TanYong-Ning ZhaoLin YeRui-Kun Ma
英文摘要
This paper proposes a new version of support vector machine (SVM) for binary classification named mixed norm proximal support vector machine, MPSVM for short. By introducing the p-norm of the normal vector of the classification hyper-plane into the objective function of proximal SVM, we get the objective function of MPSVM. MPSVM is an adaptive learning procedure with p-norm (0 < p < 1), where p can be automatically chosen by data. By adjusting the parameter p, MPSVM can realize feature selection and classification simultaneously. Since the optimization problem of MBPSVM is neither convex nor differentiable, an iterative algorithm is used to solve it. Experiments carried out on several standard UCI datasets show a clear improvement over some popular methods.
起訖頁 063-075
關鍵詞 binary classificationfeature selectionnonlinear classificationp-normproximal support vector machine
刊名 電腦學刊  
期數 201802 (29:1期)
該期刊-上一篇 Research On Differential Privacy Preserving Clustering Algorithm Based On Spark Platform
該期刊-下一篇 Effects of BP Algorithm-based Activation Functions on Neural Network Convergence
 

新書閱讀



最新講座


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄