月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
中國造船暨輪機工程學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
應用機器學習於預測維護診斷之馬達故障頻譜研究
並列篇名
MACHINE LEARNING FOR PREDICTIVE MAINTENANCE DIAGNOSIS WITH MOTOR FAULT SPECTRUM
作者 盧羿程張瑞益
中文摘要
近年來環保能源意識抬頭,隨著「2025 年綠電比例達 20%」的政策推行,許多綠色能源發電產業如雨後春筍般 出現。2019 年台灣離岸風電產業協會的成立,更凸顯了台灣離岸風電的發展潛力與重要性。離岸風場設備所需的維 護成本較陸地風場高,而離岸風機的零件保養維護也隨之成為產業優化的研究焦點。近幾年來,人工智慧(artificial intelligence,AI)技術被廣泛應用於故障預測和健康管理(prognostic and health management,PHM)。此外,結合工業 物聯網(industrial internet of things,IIoT)架構,巨量設備監控資料可藉由數據採集與監控系統(supervisory control and data acquisition,SCADA)進行傳輸,如何應用此巨量資料預測維護診斷設備之故障,對於設備的維護成本有著舉足 輕重之影響。本研究之目標在於導入決策樹分類、K-近鄰分類器、羅吉斯迴歸分類器和支持向量機至預測性維護分 析(predictive maintenance,PdM),探討不同的機器學習演算法對於相關馬達資料集之運算結果,實驗結果顯示機器 學習演算法可達 95%以上準確度。本論文對於機器學習演算法的預測性分析能力提供了初步探討,可供未來風機設 備的馬達預測性維護分析之參考。
英文摘要
In recent years, the increase of green energy awareness has risen with the policy to ''20% of green electricity in 2025.'' Many green energy companies have sprung up. The establishment of the Taiwan Wind Industry Association in 2019 further highlights the development potential and importance of offshore wind energy in Taiwan. As the maintenance cost of equipment in the offshore wind farm is higher than that of the onshore wind farm, the fault prediction and health management of offshore wind turbines have become important research. In recent years, Artificial Intelligence (AI) has been widely used in Prognostic and Health Management (PHM). By equipment monitoring with the Industrial Internet of Things (IIoT) architecture, huge amounts of data collected can be transmitted through Supervisory Control and Data Acquisition (SCADA) system. How to apply this big data for PHM has a decisive influence on the maintenance cost of equipment in the offshore wind farm. The goal of our study is to import and test some machine learning algorithms, including decision tree classifier, K-nearest neighbor classifier, logistic regression classifier, and support vector machine, for Predictive Maintenance (PdM). The experimental results show that the accuracy is over 95%. It provides a preliminary discussion on machine learning algorithms for a possible reference to PdM analysis of wind turbines in the future.
起訖頁 157-163
關鍵詞 預測維護資料分析 機器學習故障診斷Predictive maintenance (PdM) Data analysis Machine learning Fault diagnosis
刊名 中國造船暨輪機工程學刊  
期數 201911 (38:3-4合刊期)
出版單位 中國造船暨輪機工程師學會
該期刊-上一篇 應用田口法與智慧型參數設計於PEM燃料電池堆多品質性能研究
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄