月旦知識庫
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫學   財經   社會學   教育   其他 大陸期刊   核心   非核心 DOI文章
查看詳細全文
篇名
建構交通事件之人工智慧物件偵測邏輯與實證研究
並列篇名
The Development of AI Object-detection Logics and an Empirical Study for Traffic Incident
作者 吳沛儒蘇昭銘吳東凌林良泰黃啟倡鍾俊魁張和盛何毓芬簡君麟
中文摘要
道路交通事件資訊整合與發布平台可有效地讓交控中心即時地執行交通管理並讓用路人藉由重新規劃路徑以提升便利性。目前人工智慧技術被廣泛應用在各個領域,但鮮少研究致力於在交通事件偵測領域上之應用。因此,本研究嘗試發展一套人工智慧深度學習物件偵測演算邏輯,包括紅線違停、異常停留、路口溢流、逆向行駛等常見交通事件,用以自動化偵測與辨識交通事件。實證分析結果顯示,異常停留之整體準確率為73.33%、紅線違規停車之整體準確率為95.95%%、路口溢流偵測之整體準確率為99.40%、逆向行駛之整體準確率為39.28%。本研究進而探究人工智慧交通事件偵測準確率不盡理想之結果,研擬精進模式準確率之方法。
英文摘要
The integration and announcement platform of road traffic incidents can allow traffic control centers to effectively implement real-time traffic management and enhance travelers' trips by rerouting them where necessary. Nevertheless, there are not enough studies that can fully explain how artificial intelligence (AI) can be utilized to make a positive difference in this industry. In order to fill this need, this study has devised AI logics of object detection, along with a deep learning neural network, in order to identify and record traffic misdemeanors. This can then enable the traffic department to efficiently control and monitor how motorists behave while driving. Factors that will be monitored in the proposed AI-based traffic incident logics are illegal parking along a red line, parking violations, intersection overflows, and driving in the wrong direction. In order to test the effectiveness of this AI-based method, a field case was conducted with the following results. The empirical results reveal that the overall accuracy of parking violations is 73.33%, the overall accuracy of illegal parking along a red line is 95.95%, the overall accuracy of intersection overflows is 99.40%, and the overall accuracy of driving in the wrong direction is 39.28%. This study further examines which components of the AI traffic incident detection might be inexact and outlines potential approaches that could enhance the accuracy of these models.
起訖頁 299-320
關鍵詞 交通事件交通管理人工智慧深度學習物件偵測Traffic incidentTraffic managementArtificial intelligenceObject detectionDeep learning
刊名 運輸學刊  
期數 202009 (32:3期)
出版單位 中華民國運輸學會
該期刊-上一篇 桃園國際機場執行持續下降操作之研究
該期刊-下一篇 高齡社會友善行人號誌設計之研究
 

新書閱讀



最新講座


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄