從著手進行全面觀察比對圓內接四邊形托勒密定理(Ptolemy theorem)、平面凸四邊形、平面凸五邊形、平面凸六邊形及平面凸七邊形等五種圖形內臨近周邊的兩相鄰交叉對角線長度乘積一般化方程式的公式型態內容架構後,再經由深刻思索的自我發想,覺察意識到可以應用同類歸納推理法則來將這些已獲得的五樣同類公式推廣延伸到任何邊數平面凸多邊形的同性質情況上,隨即直觀地開始對各多邊形實際依圖索驥,分析探討各項邊長組合、角度組合、邊長與角度的各樣適切組合,再將這些多項組合式編製成各多邊形方程式,並且仔細逐項比較而整理出所得方程式間的共同連貫性質,而獲致一套統整的公式綜合法則;即預先歸納且詳細條列出一般多邊形的常態規則化方程式,再按順序逐一加以嚴謹翔實的理論推演驗證,以完整建立這所有公式存在的恆常完美、規律秩序及廣泛普遍的真實正確性! |