月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
住宅學報 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
建物震害毀損度預測模式之研究──倒傳遞類神經網路法之應用
並列篇名
A Forecast of Building Destruction in Earthquakes: Applications of Artificial Neural Network
作者 鄒克萬張益三杜建宏
中文摘要
本研究係以文獻回顧之相關研究、921地震時七級震度之竹山地區建物毀損資料及現有建物調查之資料,尋求影響因子與變數,並將上述資料以倒傳遞類神經網路MATLAB6.5軟體,利用其具有學習及記憶能力加以訓練、測試及驗證,建立中低層建物震害毀損度預測模式,應用於嘉義市部分舊市區,並以地理資訊系統予以空間化,將建物毀損度分為安全、危險與倒塌三級,結果證明類神經網路具有預測建物震害毀損度之能力,且其誤判率較低,是為都市防災規劃值得推廣及應用的方法。
英文摘要
This research investigates potential variables of buding destruction in earthquakes and their influences by conducting an empirical study of Jwu-Shan area in Taiwan. Jwu-Shan was one of the most serious damaged areas during the 921 earthquake which was 7.0 magnitude. In this study, MATLAB6.5 software of back-propagation neural network was used with its superior attributes, i.e., learning and memory, to establish a forecast model of hazards in middle and lower buildings in an earthquake by means of training, testing and validation. The model was tested with the data of partial old communities in Chia-Yi. Damaged buildings were classified into 3 categories: safe, unsafe, and collapse by geography information system (GIS) with data spatialization and transformation. The results suggest that the artificial neural network is capable to forecast building destruction in earthquakes with a low error rate. The paper concludes with applications of a back-propagation neural network in planning urban disaster prevention.
起訖頁 21-41
關鍵詞 倒傳遞類神經網路建物震害毀損度誤判率back-propagation neural networkbuilding destruction in earthquakeserror rate
刊名 住宅學報  
期數 200606 (15:1期)
出版單位 中華民國住宅學會
該期刊-上一篇 賣方訂價策略對成交價格之影響分析
該期刊-下一篇 公部門服務品質之研究──以品質機能展開技術應用於地政事務所之分析
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄