月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Using Statistical and Semantic Models for Multi-Document Summarization
並列篇名
Using Statistical and Semantic Models for Multi-Document Summarization
作者 Divyanshu Daiya (Divyanshu Daiya)Jaipur, INDIA (Jaipur, INDIA)Anukarsh Singh (Anukarsh Singh)Jaipur, INDIA (Jaipur, INDIA)
英文摘要
We report a series of experiments with different semantic models on top of various statistical models for extractive text summarization. Though statistical models may better capture word co-occurrences and distribution around the text, they fail to detect the context and the sense of sentences /words as a whole. Semantic models help us gain better insight into the context of sentences. We show that how tuning weights between different models can help us achieve significant results on various benchmarks. Learning pre-trained vectors used in semantic models further, on given corpus, can give addition spike in performance. Using weighing techniques in between various statistical models too further refines our result. For Statistical models, we have used TF/IDF, TextRAnk, Jaccard/Cosine Similarities. For Semantic Models, we have used WordNet-based Model and proposed two models based on Glove Vectors and Facebook's InferSent. We tested our approach on DUC 2004 dataset, generating 100-word summaries. We have discussed the system, algorithms, analysis and also proposed and tested possible improvements. ROUGE scores were used to compare to other summarizers.
起訖頁 169-183
關鍵詞 Extractive Text SummarizationSemantic Summarization ModelsStatistical Summarization ModelsMulti Document Summarization
刊名 ROCLING論文集  
期數 2018 (2018期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 LENA computerized automatic analysis of speech development from birth to three
該期刊-下一篇 台語古詩朗誦系統
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄