月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
ROCLING論文集 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
使用長短期記憶類神經網路建構中文語音辨識器之研究
並列篇名
A study on Mandarin speech recognition using Long Short- Term Memory neural network
作者 賴建宏王逸如
中文摘要
近年來類神經網路(Neural network)被廣泛運用於語音辨識領域中,本論文使用遞迴式類神經網路(Recurrent Neural Network)訓練聲學模型,並且建立中文大辭彙語音辨識系統。由於遞迴式類神經網路為循環式連接(Cyclic connections),應用於時間序列訊號的模型化(Modeling),較於傳統全連接(Full connection)的深層類神經網路而言更有益處。然而一般單純遞迴式類神經網路在訓練上隨著時間的遞迴在反向傳播(Backpropagation)更新權重時有著梯度消失(Gradient vanishing)以及梯度爆炸(Gradient exploding)的問題,導致訓練被迫中止,以及無法有效的捕捉到長期的記憶關聯,因此長短期記憶(Long Short-Term Memory, LSTM)為被提出用來解決此問題之模型,本研究基於此模型架構結合了卷積神經網路(Convolutional Neural Network)及深層類神經網路(Deep Neural Network)建構出CLDNN模型。
英文摘要
In recent years, neural networks have been widely used in the field of speech recognition. This paper uses the Recurrent Neural Network to train acoustic models and establish a Mandarin speech recognition system. Since the recursive neural networks are cyclic connections, the modeling of temporal signals is more beneficial than the full connected deep neural networks. However, the recursive neural networks have the problem of gradient vanishing and gradient exploding in the backpropagation, which leads to the training being suspended. And the inability to effectively capture long-term memory associations, so Long Short-Term Memory (LSTM) is a model proposed to solve this problem. This study is based on this model architecture and combines convolutional neural networks and deep neural networks to construct the CLDNN models.
起訖頁 114-115
關鍵詞 遞迴式類神經網路長短期記憶梯度消失(爆炸)聲學模型中文大辭彙語音辨識卷積類神經網路深層類神經網路RNNsLSTMsgradient vanishing (exploding)acoustic modelMandarinLVCSRCNNsDNNs
刊名 ROCLING論文集  
期數 2018 (2018期)
出版單位 中華民國計算語言學學會
該期刊-上一篇 探討鑑別式訓練聲學模型之類神經網路架構及優化方法的改進
該期刊-下一篇 探索結合快速文本及卷積神經網路於可讀性模型之建立
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄