英文摘要 |
In recent years, neural networks have been widely used in the field of speech recognition. This paper uses the Recurrent Neural Network to train acoustic models and establish a Mandarin speech recognition system. Since the recursive neural networks are cyclic connections, the modeling of temporal signals is more beneficial than the full connected deep neural networks. However, the recursive neural networks have the problem of gradient vanishing and gradient exploding in the backpropagation, which leads to the training being suspended. And the inability to effectively capture long-term memory associations, so Long Short-Term Memory (LSTM) is a model proposed to solve this problem. This study is based on this model architecture and combines convolutional neural networks and deep neural networks to construct the CLDNN models. |