中文摘要 |
同義詞(Near-Synonym)不只在自然語言應用中是重要的一環,也是對第二語言學習者很重要的部分。同義詞雖然是一群意思相近的單字集合,但在特定的情況與特殊用法下,選擇錯誤的同義詞會造成句意上的誤解,甚至是整個文法錯誤,因此我們希望能夠藉由上下文的訊息,再利用系統分辨出正確的同義詞,來協助外語學習者做有效率的學習。目前為止已有許多同義詞的相關研究,這些研究的方法包含:點式交互資訊(Pointwise Mutual Information, PMI)與N連詞(N-gram)模型都是常用的方法,我們想使用與以往不同的方法來提升正確率,因此我們使用跳脫(Skip N-gram)語言模型的方法針對SemEval-2007資料進行實驗,結果顯示我們提出的方法是可行的,正確率也有明顯的提升。 |