中文摘要 |
由於固態材料內存在著由電子電洞對形成的激子(exciton),因此在一個高品質因子的微共振腔當中,光子可以和主動層內的激子進行強耦合而產生能態分裂,並形成一種半光半物質的準粒子稱為激子-極化子(exciton-polariton),亦簡稱為極化子(polariton)。極化子具有玻色子的特性,當大量凝聚於最低能態時將形成玻色愛因斯坦凝聚並釋放出如同雷射的同調光。近年來,半導體微共振腔(semiconductor microcavity)被視為一種極具潛力的固態光子元件,透過設計不同的主動層結構以及材料,半導體微共振腔被認為可應用於垂直共振腔面射型雷射(VCSEL)、單光子光源以及其他光電子元件中(1-6)。本篇除了簡介半導體微共振腔極化子雷射的發展之外,同時說明分析與量測極化子雷射所需的儀器與技術。
In a high quality factor microcavity, photons can strongly couple with the excitons, formed by electrons and holes by Coulomb interaction in solid materials, to generate a new kind of quasi-particle, called exciton-polariton or polariton, with half-matter and half-light characteristics. Polariton is a kind of Boson, which is able to form Bose- Einstein condensation through stimulated scattering of polaritons at the ground state and to emit coherent photons when polaritons escape from the cavity. Recently, semiconductor microcavities have been considered as a promising solid light sources because they can potentially be applied in vertical-cavity surface emitting lasers, single photon sources and other optoelectronic devices(1-6) . In this report, we not only give an introduction to semiconductor microcavity polariton lasers, but also introduce the technology we need to characterize the polariton lasers. |