月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
中國造船暨輪機工程學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
改良式瞬時深度控制法於自主式水下載具航跡控制之研究
並列篇名
APPLICATION OF MODIFIED INSTANTANEOUS DEPTH CONTROL METHOD ON TRACK KEEPING CONTORL OF AUTONOMOUS UNDERWATER VEHICLE
作者 方銘川洪嘉祥李子宜
中文摘要
本文探討在不同洋流方向下,控制自主型水下載具(autonomous underwater vehicle,AUV)的推力,使載具保持欲航行的路徑,亦使其運動軌跡趨於穩定。藉由PMM(planar motion mechanism)試驗得到AUV之流體動力係數,提供動態數值模型進行六度運動模擬,以作為開發控制系統的基礎。本研究以自調式類神經網路比例微分(neural network proportional-derivative)控制器,控制推力來進行AUV的運動操控。在航跡控制方面,選用兩種不同方法,分別為瞄準線方式及瞬時深度控制法,並利用中繼點之技巧來改良AUV之軌跡穩定度。在洋流影響下,由結果驗證本研究發展之自調式類神經網路PD控制器配合改良式瞬時深度控制法,的確可穩定AUV運動姿態且達到快速導航之控制,並節省了傳統PD控制尋找最佳化增益參數所消耗之時間。 The main goal of the study is to find a feasible planning method of the track keeping for the autonomous underwater vehicle (AUV) and the motion behaviors of the AUV in different environments through the Artificial Neural Network (ANN) control system will be discussed. By controlling the AUV’s thrust, we can make the AUV’s motion be stable and reach its desired path. Based on the previous research of PMM (Planar Motion Mechanism) test for the AUV, we can provide the related hydrodynamic coefficients to the numerical computer program to solve the motion behaviors of the AUV, which can serve as the basis of the control system developed here. In the study, the L.O.S. (Line of Sight) technique is applied to guide the heading of the AUV and the PD (Proportional- Derivative) controller incorporating with the ANN algorithm is adopted to optimally control the thrust. Two kinds of the track keeping methods are adopted. The first is the traditional line of sight method and the second is applying the depth control based on the expected pitch angle. Both methods are also improved by using the step by step technique, in order to obtain the more stable track keeping behaviors. Furthermore, the current effect is also included in the present study. From the present numerical simulation results, the neural network self-tuning PD controller is indeed more efficient on the AUV track keeping control than the traditional one. Besides, the second method with the expected depth control submitted here is also proved more stable than the traditional L.O.S. method, especially for the 3D track keeping problem.
起訖頁 207-217
關鍵詞 瞬時深度控制潛航器瞄準線類神經網路PD控制器航跡控制Instantaneous Depth ControlUnderwater VehicleLine of sightNeural network algorithmPD controllerTrack keeping
刊名 中國造船暨輪機工程學刊  
期數 201511 (34:4期)
出版單位 中國造船暨輪機工程師學會
該期刊-上一篇 非線性波作用下離岸風機基椿之溯升高度和波浪荷載模擬
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄