月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
臺灣經濟預測與政策 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
以均方誤差為準則比較X-12-ARIMA和以模型基礎推導的季節調整濾器
並列篇名
AMean Squared Error Criterion for Comparing X-12-ARIMA and Model-Based Seasonal Adjustment Filters
作者 刁錦寰刁錦寰William R. Bell
中文摘要
許多文獻如Cleveland and Tiao (1976), Burridge and Wallis (1984),和Depoutot and Planas (1998) 已比較X-11 和以模型基礎推導的季節調整濾器的權數函數, 本文則建議另一個以計算均方誤差為準則的比較方法。對於一個ARIMA 模型所產生的時間數列, 本文分別計算以X12-ARIMA 估算的季節成分, 及以模型為基礎所估算最適的季節成分, 並比較兩者的均方誤差。以挑選較低均方誤差為圭臬, 本文的方法提供了如何選擇最佳X-12 季節調整濾器的準則, 以及尚可改進的幅度。當以航空公司月資料模型做模擬實驗,我們發現如果估計標準季節成分,選擇最佳X-12 季節調整濾器只會造成些許均方誤差值的增加; 但如果是在白噪音為均一先驗分配假設下估計季節成分, 最佳X-12 季節調整濾器會造成均方誤差值大幅的增加, 所以並不是一個好的選擇。模擬實驗分析發現X-12-ARIMA程式經常會選擇較短的季節調整濾器。
英文摘要
Various authors – Cleveland and Tiao (1976), Burridge and Wallis (1984), and Depoutot and Planas (1998) – have compared weight functions from X-11 versusmodel-based seasonal adjustment filters. We suggest a different approach to comparing filters by computing the mean squared error (MSE) when using an X-12-ARIMA filter for estimating the underlying seasonal component from an ARIMA model-based decomposition, and comparing this to the MSE of the optimal model-based estimator. This provides a criterion for choosing an X-12 filter for a given series (model the series and pick the X-12 filter with lowest MSE), and also provides results on how much MSE increases when using an X-12 filter rather than the optimal model-based filter. Calculations for monthly time series following the airlinemodel with various parameter values showgenerally small increases in MSE for estimating the canonical seasonal component by using the best X-12 filter instead of the optimal model-based filter. The results are much less favorable to the X-12 filters with a uniform prior distribution on the white noise allocation in the seasonal model decomposition. Examinations of simulated series showthat, for the canonical decomposition, automatic filter choices of the X-12-ARIMA program sometimes use shorter seasonal moving averages than are desirable.
起訖頁 1-32
關鍵詞 X11X-12-ARIMA移動平均季節分解X11X-12-ARIMAMoving averagesSeasonal decomposition
刊名 臺灣經濟預測與政策  
期數 201210 (43:1期)
出版單位 中央研究院經濟研究所
該期刊-下一篇 以模型為基礎降低殘差季節自我相關度的季節調整
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄