英文摘要 |
This study probes into the prediction model of customer churn on the Internet. This model takes the cumulative quantity control (CQC) chart as the monitoring tool in which the most appropriate parameters are found with the combination of control chart mechanism and confusion matrix. The prediction model can monitor control chart dynamically to examine whether customer's login behavior tends to deteriorate or not. In monitoring of variables, inter-login time can show the historical track of login behavior, while recency can reflect the recent login situation. This study applies two variables in CQC at the same time. Most past prediction models adopt static analysis approach to analyze customer churn. This research is using the dynamic prediction concept, which is different from that of the past. Except for visual diagram, new information will be continuously shown in the chart as time changes and information updates. When CQC score exceeds upper control limit (UCL), a warning of customer churn will appear, which represents the deterioration of certain customer's behavior. |