月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
國際應用科學與工程學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Data Security Using Decomposition
作者 N. Maheswari (N. Maheswari)M. Revathi (M. Revathi)
中文摘要
Protection of privacy from unauthorized access is one of the primary concerns in data use, from national security to business transactions. It brings out a new branch of data mining, known as Privacy Preserving Data Mining (PPDM). Privacy-Preserving is a major concern in the application of data mining techniques to datasets containing personal, sensitive, or confidential information. Data distortion is a critical component to preserve privacy in security-related data mining applications; we propose a QR Decomposition method for data distortion. We focus primarily on privacy preserving data clustering. As the distorted data occupies small amount of storage space, the memory requirement becomes low. Finally, we evaluate the effectiveness of the method in terms of misclassification error rate. Our experiments on several data sets reveal that the classification error rate varies as a result of security. However, the method has much less computational cost, especially when new data items are inserted dynamically.
起訖頁 303-312
關鍵詞 Privacy preservingQR Decompositionclusteringdata distortiondata mining
刊名 國際應用科學與工程學刊  
期數 201412 (12:4期)
出版單位 朝陽科技大學理工學院
該期刊-上一篇 Chaotic Behavior in the Real Dynamics of a One Parameter Family of Functions
該期刊-下一篇 Fabrication and Characteristics of 8YSZ/Ni Functionally Graded Materials by Applying Spark Plasma Sintering Procedure
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄