中文摘要 |
In this paper, we consider a model describing predator prey interaction in a chemostat that incorporates general response functions and identical removal rates. The existence of steady states, their local stability and persistence of the model are presented. We construct a Lyapunov function in the study of the global stability of a predator free steady state. We show that a slight fluctuation in the maximal growth rates of prey and/or predator devastate the form of conservation principle. Numerical simulations are also presented to analyze the model equations and determine the effect of the operating parameters of the chemostat on its dynamics. |