月旦知識庫
 
  1. 熱門:
 
首頁 臺灣期刊   法律   公行政治   醫事相關   財經   社會學   教育   其他 大陸期刊   核心   重要期刊 DOI文章
國際應用科學與工程學刊 本站僅提供期刊文獻檢索。
  【月旦知識庫】是否收錄該篇全文,敬請【登入】查詢為準。
最新【購點活動】


篇名
Predicting Hourly Ozone Concentration in Dali Area of Taichung County Based on Multiple Linear Regression Method
作者 Pai, Tzu-yi (Pai, Tzu-yi)Sung, Pao-jui (Sung, Pao-jui)Lin, Chung-yi (Lin, Chung-yi)Leu, Horng-guang (Leu, Horng-guang)Shieh, Yein-rui (Shieh, Yein-rui)Chang, Shuenn-chin (Chang, Shuenn-chin)Chen, Shyh-wei (Chen, Shyh-wei)Jou, Jin-juh (Jou, Jin-juh)
中文摘要
In this study, multiple linear regression (MLR) method was used to establish the relationship between the O3 at time t + 1 and other indices including hourly air pollutant concentrations and meteorological conditions at time t. Then O3 was predicted using the obtained best-fitting MLR. The results indicated that the relationship between the O3 at time t + 1 and other indices including hourly air pollutant concentrations and meteorological conditions at time t agreed with MLR well, The values of mean absolute percentage error (MAPE), correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), and root mean square error (RMSE) were 29.09 %, 0.95, 0.90, 45.33, and 6.73, respectively when determining the best-fitting equation. In addition, MLR could predict hourly ozone concentrations successfully. The values of MAPE, R, R2, MSE, and RMSE were 10.37 %, 0.93, 0.86, 0.33, and 0.57, respectively when predicting. It also indicated that the hourly air pollutant concentrations and meteorological conditions at time t could be applied on the prediction of ozone of time t +1.
起訖頁 127-131
關鍵詞 Multiple linear regressionOzoneAir qualityMeteorological conditionsPhotochemical reaction
刊名 國際應用科學與工程學刊  
期數 201007 (7:2期)
出版單位 朝陽科技大學理工學院
該期刊-上一篇 Biosorption of Acid Dyes Using Spent Brewery Grains: Characterization and Modeling
該期刊-下一篇 Electrical Energy Generated by a Photovoltaic Module Installed on East-West Tracked Panel
 

新書閱讀



最新影音


優惠活動




讀者服務專線:+886-2-23756688 傳真:+886-2-23318496
地址:臺北市館前路28 號 7 樓 客服信箱
Copyright © 元照出版 All rights reserved. 版權所有,禁止轉貼節錄