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Abstract

Artificial intelligence (AI) technologies are increasingly integrated into healthcare, yet their economic value remains
uncertain. Traditional economic evaluation methods may not adequately capture the unique features of Al, including
dynamic model evolution, scalability, and broader societal impacts. This systematic review synthesized existing evi-
dence on the cost-effectiveness of Al-based healthcare interventions and assessed the methodological rigor of pub-
lished studies. A comprehensive search identified health economic evaluations of Al applications published between
September 2019 and March 2025, following PRISMA and SWiM guidelines and registered in PROSPERO
(CRD42025641230). Eligible studies were full economic evaluations comparing Al-based interventions with non-AI
alternatives, and data were extracted on study characteristics, analytical methods, decision-analytic models, perspec-
tives, outcomes, and Al-specific costs. Methodological quality was evaluated using the CHEERS checklist. A total of 52
studies from 15 countries were included, most published after 2020, focusing on diabetic retinopathy screening, cancer
detection, and cardiovascular disease applications. Cost-utility analysis was the predominant method (79%), followed
by cost-effectiveness analysis (15%). Nearly all studies (98%) concluded that Al-based strategies were cost-effective,
cost-beneficial, or cost-saving. However, reporting of Al-specific costs was inconsistent, while over 90% of studies
detailed expenses such as software licensing, per-test charges, or maintenance fees, some omitted cost information
entirely, limiting comparability. Overall, Al-based healthcare interventions are generally reported as cost-effective, but
methodological heterogeneity, incomplete cost reporting, and potential publication bias constrain the reliability and
comparability of current evidence. Standardized economic evaluation frameworks that incorporate comprehensive cost
structures and account for the evolving nature of Al are urgently needed.
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1. Introduction

H ealthcare systems worldwide face growing
pressures from rising costs, limited budgets,
and increasing patient demand. Within this context,
artificial intelligence (AI) technologies have rapidly
emerged as potential solutions across a wide range
of healthcare settings. Al is being applied to di-
agnostics [1], treatment planning [2], predictive
analytics [3], facilitate screening [4], among other

uses. By leveraging large datasets, Al can support
more efficient clinical decision-making and
improve the quality and delivery of care [5,6].
Given finite healthcare resources, it is essential to
evaluate not only clinical effectiveness but also the
economic value of emerging technologies. Eco-
nomic evaluations, such as cost-effectiveness and
cost-utility analyses, systematically compare costs
and health outcomes to guide healthcare policy,
reimbursement decisions, and resource allocation.

Received 10 September 2025; accepted 23 October 2025.
Available online 15 December 2025

* Corresponding author at: No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City 114202, Taiwan, ROC.

E-mail address: pinghsuan.h@mail.ndmctsgh.edu.tw (P.-H. Hsieh).

https://doi.org/10.38212/2224-6614.3570

2224-6614/© 2025 Taiwan Food and Drug Administration. This is an open access article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

=
ol
)
>
&
<
-
<
z
9
&
S



mailto:pinghsuan.h@mail.ndmctsgh.edu.tw
https://doi.org/10.38212/2224-6614.3570
http://creativecommons.org/licenses/by%2Dnc%2Dnd/4.0/

o
z
2
z
>
=
>
=
o
5
@
(o2

488 JOURNAL OF FOOD AND DRUG ANALYSIS 2025;33:487—500

These evaluations typically use incremental cost-
effectiveness ratios (ICERs) and quality-adjusted
life years (QALYs) to quantify value [7].

Economic evaluations of Al-assisted technologies,
however, face methodological challenges that differ
from those of pharmaceuticals. Unlike drugs, which
have well-defined comparators and remain fixed
after approval, Al interventions are dynamic and
evolve with user feedback, requiring ongoing clini-
cian engagement. They are often deployed at scale
with marginal costs approaching zero, and their
benefits may extend beyond health outcomes to
include productivity gains and other societal effects
[8—10]. In addition, the high technical complexity and
versatility of Al complicate its evaluation with stan-
dard cost-effectiveness methods. Traditional cost-
per-QALY analyses may therefore be insufficient to
capture the broader impact of Al, highlighting the
need for tailored methodological approaches [8].

The existing literature on the economic evalua-
tion of Al technologies shows substantial variability
in methodological rigor and comprehensiveness
[11—13]. Many studies emphasize technical perfor-
mance or short-term predictive accuracy rather
than long-term, patient-centered outcomes or cost-
effectiveness measures relevant to healthcare deci-
sion-makers. Furthermore, critical components of
robust economic evaluation, such as comprehensive
uncertainty analyses and transparent interpretation
of ICERs, are frequently lacking [8]. Despite the
rapid growth of Al-related clinical research,
rigorous and comprehensive economic evaluations
remain relatively scarce [11,13].

In light of these methodological complexities, this
systematic review aims to synthesize current evi-
dence on economic evaluations of Al-assisted
healthcare technologies. Specifically, we seek to
identify, evaluate, and summarize existing studies,
highlighting methodological strengths and limita-
tions. We also aim to clarify key challenges in
conducting such evaluations and to identify gaps
and opportunities for advancing this field.

2. Methods

We conducted a systematic review of health
economic evaluations (HEEs) of Al applications in
healthcare, focusing on full economic evaluations
that compared both costs and consequences of Al-
based interventions. The review followed the
Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) and the Synthesis
Without Meta-analysis (SWiM) guidelines [14,15],
and the protocol was registered on PROSPERO
(registration number: CRD42025641230).

2.1. Search strategy

A comprehensive literature search was conducted
in PubMed, covering the period from September
2019 through March 2025. The objective was to
identify original studies evaluating the cost-
effectiveness of Al in clinical healthcare settings.
The search was performed without restrictions on
language, study design, or country. Search terms
combined Medical Subject Headings (MeSH) and
free-text keywords related to artificial intelligence
(“artificial  intelligence,” “machine learning,”
“deep learning”) with terms related to economic
evaluation  (“cost-effectiveness,”  “cost-utility,”
“cost-benefit,” “economic evaluation”). Boolean
operators (AND, OR) were used to structure the
search. The detailed search strategy is provided in
Supplementary Table S1 (https://doi.org/10.38212/
2224-6614.3570).

2.2. Eligibility criteria

Studies were eligible for inclusion if they met
the following criteria, based on the PICO frame-
work: (i) Population: patients receiving clinical
care in any healthcare setting (e.g., primary care,
tertiary care, national screening programs); (ii)
Intervention/Comparator: at least one comparator
involving Al-based intervention and a non-Al
alternative (e.g., standard care, human expert, or
traditional diagnostics); (iii) Outcome: at least
one full economic evaluation outcome, including
cost-effectiveness (e.g., cost per QALY, cost per
case detected), cost-utility, cost-benefit, or cost-
minimization metrics. Only full economic evalua-
tions were included. Studies reporting only cost
analysis, simulation-only models without real-
world comparators, or economic reviews were
excluded.

2.3. Data extraction

A standardized data extraction form was used to
collect study-level information. Two reviewers
(WTW and YWC) independently extracted the
following data for each study: author, year of pub-
lication, country, clinical domain, type of Al prod-
uct, study objective, comparator, type of economic
evaluation, model type, perspective, primary out-
comes, and Al-specific cost elements (e.g., per-use
cost, development cost). Discrepancies in data
extraction were resolved by consensus, and a third
reviewer (PHH) adjudicated disagreements when
necessary.
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2.4. Assessment of methodological quality

The quality of the included studies was assessed
using the Consolidated Health Economic Evalua-
tion Reporting Standards (CHEERS) checklist [16].
The CHEERS statement evaluates the completeness
of HEEs across 28 items in 7 domains.

3. Results
3.1. Study selection

The search identified 4083 records. After
removing 1367 duplicates, 2716 records remained
for screening by title and abstract. Most were
excluded for irrelevance (e.g., not related to Al, not
a health economic evaluation, or not a journal
article). Fifty-six reports were assessed in full text,
and three were excluded for not evaluating Al in a
health economic context. In total, 52 studies were
included in the review (Fig. 1).

3.2. General characteristics

The 52 included studies were conducted across 15
countries. The United States contributed the largest
number (n = 17), followed by China (n = 13) and
the United Kingdom (n = 5). Other countries with
multiple studies included Germany (n = 4),
Australia (n = 3), and Sweden (n = 2). Single
studies were reported from Singapore, Ireland, the
Netherlands, Canada, Italy, Denmark, Israel, Japan,
Spain, and Taiwan. Publication activity has accel-
erated in recent years, with the majority of studies
appearing between 2022 and 2025 (n = 36, 69%),
reflecting growing global attention to the economic
evaluation of Al in healthcare.

Ophthalmology was the most frequently repre-
sented (n = 14, 27%), largely focused on diabetic
retinopathy, retinopathy of prematurity, and cata-
ract screening. Oncology accounted for 11 studies
(21%), including colorectal cancer detection during
colonoscopy, lung cancer screening and risk pre-
diction, early gastric cancer detection, and prostate
cancer pathology. Cardiovascular diseases were
examined in 7 studies (13%), covering applications
such as AI-ECG for atrial fibrillation and left ven-
tricular dysfunction, chest pain risk stratification,
opportunistic CT screening for CVD, and prenatal
ultrasound for congenital heart disease. Other do-
mains included infectious diseases (n = 3, 6%;
tuberculosis and sepsis), neurology and intensive
care (n = 3, 6%; stroke detection, ICU discharge and
ventilation), and a diverse group of miscellaneous
areas (n = 14, 27%) such as dentistry, rehabilitation,

fall prevention, nutrition diagnostics, obstetrics,
and musculoskeletal health.

In terms of technology, most studies evaluated
device-integrated systems (n = 36, 69%), reflecting
the predominance of Al tools embedded into im-
aging, diagnostic, and monitoring equipment. Pure
algorithms (n = 11, 21%) were mainly applied for
predictive modeling and population-level screening
tasks. A smaller number assessed interactive apps
(n = 2, 4%) designed for treatment adherence or
self-management, decision-support software (n =1,
2%) for intrapartum monitoring, and ICU-focused
decision tools (n = 2, 4%) used for discharge and
ventilation management. This distribution shows
that economic evaluations of Al have concentrated
on hardware-integrated diagnostic systems, while a
minority have explored software-only or app-based
approaches.

The studies were conducted in varied healthcare
settings. Most evaluations focused on national or
regional screening programs (e.g., diabetic reti-
nopathy, breast cancer, cervical cancer) or tertiary
care centers. A smaller number assessed Al in
critical care [17,18], community screening program
[19], or community-based care models in low- and
middle-income countries [20]. This diversity high-
lights the broad and expanding interest in evalu-
ating Al across different healthcare contexts and the
growing emphasis on assessing its economic value
using structured methods. Detailed characteristics
are presented in Table 1.

3.3. Health economic characteristics

Most studies applied cost-utility analysis (n = 37,
78.7%), followed by cost-effectiveness analysis
(n = 7, 14.9%). Only one study each used cost-
consequence analysis [21], cost-benefit analysis
[22], and cost-minimization analysis [23] (2.1%
each). The majority employed decision-analytic
modeling, with Markov models the most common
(n = 24, 51.1%), followed by hybrid models
combining decision trees and Markov models
(n = 10, 21.3%) and decision trees alone (n = 9,
19.1%). A few studies applied alternative modeling
approaches (n = 3, 6.4%).

Regarding perspective, nearly half of the studies
adopted a healthcare system perspective (n = 21,
44.7%). Societal perspectives were reported in 12
studies (25.5%), while payer perspectives were used
in 6 studies (12.8%). A smaller number reported
combined perspectives, including societal and
healthcare system (n = 6, 12.8%), and payer and
employer (n = 1, 2.1%). Only one study (2.1%)
adopted a patient perspective. This diversity
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Fig. 1. PRISMA flow diagram of systematic review process.

highlights increasing interest in assessing Al not
only from a healthcare or payer viewpoint but also
from Dbroader societal and patient-centered
perspectives.

Across all studies, 98.1% (n = 51) concluded that
Al-based strategies were cost-effective, cost-
beneficial, or cost-saving. One study reported
conditional outcomes, stating that Al was “poten-
tially cost-effective” depending on modeling as-
sumptions or specific scenarios [24].

Al implementation costs varied substantially
across the included studies. Pricing models
commonly involved per-test charges (n = 20,
42.6%), combinations of licensing, per-test, and
maintenance fees (n = 10, 21.3%), or software
licensing alone (n = 5, 10.6%). Smaller numbers of
studies reported licensing with per-test fees (n = 4,
8.5%) or licensing with maintenance fees (n = 2,

4.3%), while a few reported only maintenance fees
(n =1, 21%) or per-test with maintenance fees
(n =1, 2.1%). Importantly, 4 studies (8.5%) did not
specify any cost details, which limits transparency
and comparability.

In screening applications, costs were often re-
ported on a per-test basis, ranging from a few dol-
lars for chest X-ray or ECG interpretation [19,25,26]
o around $60 per patient annually for Al-supported
programs [23]. Treatment monitoring solutions
sometimes adopted a per-patient structure, with
costs reaching several thousand dollars per year for
Al-enabled tuberculosis adherence support [27].
Diagnostic applications showed even greater vari-
ation, with image-based assessments ranging from
tens of euros per case to several hundred euros per
correct diagnosis [28,29]. More complex Al plat-
forms, such as mammography or critical care
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Author

Year

Country

Objective

Type of Al

Padula, W. V. et al. [36]

van Wyk, F. et al. [22]

Hill, N. R. et al. [37]

Wolf, R. M. et al. [38]

Xie, Y. et al. [23]

Schroeder, E. et al. [21]

Nsengiyumva, N. P. et al. [19]

Salcedo, J. et al. [27]

Schwendicke, F. et al. [39]

Tseng, A. S. et al. [40]

van Leeuwen, K. G. et al. [24]

Mallow, P. J. et al. [41]

Areia, M. et al. [42]

de Vos, J. et al. [17]

Ericson, O. et al. [43]

Fuller, S. D. et al. [44]

Gomez Rossi, J. et al. [45]

Huang, X. M. et al. [46]

Mital, S. and H. V. Nguyen [30]

2019

2019

2020

2020

2020

2020

2021

2021

2021

2021

2021

2021

2022

2022

2022

2022

2022

2022

2022

USA

USA

UK

USA

Singapore

UK and Ireland

Pakistan

USA

Germany

USA

UK

USA

USA

Netherlands

Sweden

USA

USA

China

USA

Cost-utility of repeated risk
assessments for pressure injury
prevention

Cost-benefit of ML-based
acquisition systems for sepsis
Cost-effectiveness of ML-guided
targeted screening for atrial
fibrillation

Cost-effectiveness of Al
screening for diabetic
retinopathy in pediatric diabetes
Cost-minimization of deep
learning versus human
assessment for diabetic
retinopathy screening
Economic evaluation of
Al-assisted cardiotocography
interpretation during labor
Cost-effectiveness of Al-based
chest X-ray triage strategies for
pulmonary tuberculosis
diagnosis

Cost-effectiveness of AiCure for
Al-based treatment monitoring
of active tuberculosis
Cost-effectiveness of Al-assisted
proximal caries detection on
bitewing radiographs
Cost-effectiveness of AI-ECG
algorithm for universal
screening of asymptomatic left
ventricular dysfunction
Cost-effectiveness of Al for large
vessel occlusion detection in
acute ischemic stroke
Cost-utility of OUDTEST for
predicting opioid use disorder in
orthopedic surgical patients
Cost-effectiveness of AL
detection tools in screening
colonoscopy for colorectal
cancer prevention
Cost-effectiveness of Pacmed
Critical for ICU discharge
decision-making
Cost-effectiveness of ML
algorithm for sepsis detection
in ICUs

Cost-effectiveness of ARIAS-
based diabetic retinopathy
screening in low-income
primary care

Cost-effectiveness of Al for
clinician support in
dermatology, dentistry, and
ophthalmology
Cost-effectiveness of Al
screening for diabetic
retinopathy

Cost-effectiveness of AL

versus PRS risk-stratified
mammography screening

Pure algorithm

Device-integrated system

Pure algorithm

Device-integrated system

Pure algorithm

Decision-support software

Device-integrated system

Interactive app

Device-integrated system

Pure algorithm

Device-integrated system

Pure algorithm

Device-integrated system

Software

Pure algorithm

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

(continued on next page)
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Author

Year

Country

Objective

Type of Al

Morrison, S. L. et al. [47]

Ziegelmayer, S. et al. [48]

Schwendicke, F. et al. [29]

Barkun, A. N. et al. [49]

Hassan, C. et al. [50]

Li, H. et al. [51]

Lin, S. et al. [20]

Liu, H. et al. [52]

Pham, C. T. et al. [53]

Pickhardt, P. J. et al. [54]

Shen, M. et al. [25]

Srisubat, A. et al. [55]

Chawla, H. et al. [56]

Curl, P. K. et al. [57]

Ginsberg, G. M. et al. [58]

Hill, H. et al. [59]

Hu, W. et al. [60]

Kongstad, L. P. et al. [61]

Lin, S. et al. [62]

2022

2022

2022

2023

2023

2023

2023

2023

2023

2023

2023

2023

2023

2024

2024

2024

2024

2024

2024

USA

USA

Germany

Canada

Italy

China

China

China

Australia

USA

China

Thailand

USA

USA

Israel

UK

Australia

Denmark

China

Cost-effectiveness of
autonomous and assistive
Al-based ROP screening
Cost-effectiveness of Al in initial
CT scans for lung cancer
screening

Cost-effectiveness of
Al-supported detection of
proximal caries
Cost-effectiveness of Al-aided
colonoscopy using GI Genius
Cost-utility of GI GENIUS Al
system in colonoscopy for
FIT-positive patients
Cost-effectiveness of Al-based
diabetic retinopathy screening
vs ophthalmologist and no
screening

Cost-effectiveness of Al-assisted
DR telemedicine vs manual
grading in LMICs
Cost-effectiveness of screening
methods for major blindness-
causing eye diseases
Cost-effectiveness and value of
information of AmbIGeM Al
system for fall prevention
Cost-effectiveness of Al-assisted
opportunistic CT screening for
CVD, osteoporosis, and
sarcopenia

Cost-effectiveness of Al-assisted
LBC vs manual LBC and HPV
testing for cervical cancer
Cost-utility of DL vs human
graders in Thailand's DR
screening

Cost-effectiveness of fully
automated retinal image
screening vs universal
ophthalmologist referral
Cost-effectiveness of Al-based
opportunistic screening for
vertebral fractures

Cost-utility of DL-assisted
ultrasound in prenatal screening
for congenital heart disease
Cost-effectiveness of Al-based
risk-stratified vs age-based
breast cancer screening
Cost-effectiveness of Al-based
diabetic retinopathy screening
vs current clinical practice
Cost-effectiveness of Al-based
selfBACK app for low back pain
management

Cost-effectiveness and cost-
utility of Al-assisted
community-based fundus
screening

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Pure algorithm

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Interactive app

Device-integrated system

(continued on next page)
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Author

Year

Country

Objective

Type of Al

Liu, W. T. et al. [26]

Marka, A. W. et al. [63]

Sun, M. Y. et al. [64]

Tsiachristas, A. et al. [65]

Wang, Y. et al. [66]

Wu, X. et al. [67]

Yonazu, S. et al. [33]

Zanghelini, F. et al. [68]

Zwerwer, L. R. et al. [18]

Ahmed, M. et al. [69]

Akune, Y. et al. [32]

Du, X. et al. [28]

Trujillo, J. C. et al. [31]

Huang, F. et al. [70]

2024

2024

2024

2024

2024

2024

2024

2024

2024

2025

2025

2025

2025

2025

Taiwan

USA

China

UK

China

China

Japan

UK

Germany

USA

Japan

Sweden

Spain

China

Cost-effectiveness of AI-ECG for
asymptomatic left ventricular
dysfunction

Cost-effectiveness of Al support
in MR imaging for renal lesion
classification

Cost-effectiveness of Al-based
rapid nutritional diagnostic
system in hospitals
Cost-effectiveness of Al-Risk for
CV risk management in chest
pain patients

Impact of AI model sensitivity/
specificity on cost-effectiveness
of DR screening
Cost-effectiveness and cost-
utility of digital hierarchical
screening for cataract detection
Cost-effectiveness of Al-assisted
CADx (Tango) for early gastric
cancer detection
Cost-effectiveness of GaitSmart
Al rehab tool after joint
replacement

Early-stage cost-effectiveness of
Al in ICU mechanical ventilation
Cost-effectiveness of autono-
mous Al screening for pediatric
diabetic retinal disease
Cost-effectiveness of AI DR
screening in Japan? SHC and
diabetes management
Cost-effectiveness and
effectiveness of Al-assisted
prostate cancer pathology
Cost-effectiveness of LungFlag
ML risk prediction for lung
cancer screening
Cost-effectiveness of mobile
Al-integrated low-dose CT lung
cancer screening

Pure algorithm

Device-integrated system

Device-integrated system

Device-integrated system

Pure algorithm

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Device-integrated system

Pure algorithm

Device-integrated system

Abbreviations: Al, artificial intelligence; CADx, computer-aided diagnosis; CT, computed tomography; CVD, cardiovascular disease;
DL, deep learning; DR, diabetic retinopathy; ECG, electrocardiogram; FIT, fecal immunochemical test; HPV, human papillomavirus;

ICU, intensive care unit; LBC, liquid-based cytology; LMIC, low- and middle-income country; ML, machine learning; PRS, polygenic
risk score; ROP, retinopathy of prematurity; SHC, special health checkups.

decision-support systems, incurred substantial
fixed development costs exceeding $60,000, along
with recurring annual license fees in the tens of
thousands [30,31]. At the population level, in-
vestments could reach tens of thousands of dollars
per case prevented or hundreds of millions for na-
tional-scale deployment [32,33]. Detailed health
economic characteristics are presented in Table 2.

3.4. Methodological quality of included studies

Overall, the methodological quality of the 52
included studies was rated as good according to the
CHEERS checklist. Detailed performance across all

items is provided in Supplementary Table S2
and Supplementary Figure S1 (https://doi.org/10.
38212/2224-6614.3570). Four items showed subopti-
mal reporting, with fewer than half of the studies
addressing them adequately: presence of a health
economic analysis plan, characterization of distri-
butional effects, description of approaches to pa-
tient and stakeholder engagement, and assessment
of the effects of such engagement.

4. Discussion

This systematic review synthesized the most
recent evidence from 52 economic evaluations of Al
applications in healthcare published between 2019
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Table 2. Health economic characteristics.
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Author Setting Primary outcome Perspective HEE DAM type Comparator Type of Al cost
type
Padula, W. V. et al. Tertiary care ICER per QALY gained Societal and health CUA Markov model Standard care Not specified
care system
perspectives
van Wyk, F. et al. Tertiary care/ICU Cost-benefit of machine Societal perspective CBA  Decision tree Standard care Maintenance fees
learning applied to early
detection of sepsis
Hill, N. R. et al. Primary care ICER per QALY gained Health care system CUA Decision tree and No Al Not specified
Markov model
Wolf, R. M. et al. Primary care Incremental cost per Patient's perspective CEA  Decision tree Standard care Per-test charges
additional diabetic reti-
nopathy case detected
Xie, Y. et al. National screening Total cost per patient Health care system CMA Decision tree Standard care Per-test charges/
program screened across different Maintenance fees
Al-based models
Schroeder, E. et al. Secondary care Composite poor neonatal Health care system CCA NA Standard care Not specified
outcome and develop-
mental progress at age 2
Nsengiyumva, Community Costs and DALY averted Health care system CEA  Decision tree Standard care Per-test charges
N. P. et al. screening program
Salcedo, J. et al. Community-based ICER per QALY gained societal perspective CUA Markov model Standard care Software licensing/
care Maintenance fees
Schwendicke, Primary care Incremental cost per Health care system CEA  Markov model Standard care Per-test charges
F. et al. gained year of tooth
retention
Tseng, A. S. et al. Tertiary care ICER per QALY gained Payer's perspective CUA Decision tree and No Al Per-test charges
Markov model
van Leeuwen, Tertiary care ICER per QALY gained Societal perspective CUA Markov model Standard care Per-test charges
K. G. et al.
Mallow, P.J. et al. Primary care ICER per QALY gained Payer's and employer's CUA Markov model Standard care Per-test charges
perspectives
Areia, M. et al. Outpatient/ Cost, yearly additional Societal perspective CEA  Markov model Standard care Per-test charges
Screening prevention of colorectal
cancer cases and related
deaths
de Vos, J. et al. Tertiary care ICER per QALY gained Societal perspective CUA Markov model Standard care Software licensing
Ericson, O. et al. Intensive care unit ICER per QALY gained Societal and health CUA Decision tree and Standard care Per-test charges
care system Markov model
perspectives
Fuller, S. D. et al. Primary care ICER per QALY gained Health care system CUA Decision tree and No Al Software licensing/
Markov model Per-test charges/
Maintenance fees
Gomez Rossi, J. et al. Outpatient care ICER per QALY gained, Payer's perspective CUA Markov model Standard care Per-test charges

ICER per tooth-retention
year, and diagnostic costs
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Huang, X. M. et al. Community-based ICER per QALY gained Societal and health CUA Decision tree and Standard care Software licensing/
care care system Markov model Per-test charges/
perspectives Maintenance fees
Mital, S. and H. V. Preventive Oncology ICER per QALY gained Health care system CUA Hybrid: decision  No Al Software licensing/
Nguyen tree and other Per-test charges
Morrison, S. L. et al. Tertiary neonatal care ICER per QALY gained Health care system CUA Decision tree Standard care Per-test charges
Ziegelmayer, S. et al. Tertiary care ICER per QALY gained Payer's perspective CUA Markov model Standard care Per-test charges
Schwendicke, F. et al. Outpatient dental care Incremental cost per Health care system CEA  Markov model Standard care Per-test charges
gained year of tooth perspective
retention
Barkun, A. N. et al. Outpatient screening ICER per QALY gained Payer's perspective CUA Markov model Standard care Software licensing
Hassan, C. et al. Tertiary care ICER per QALY gained Payer's perspective CUA Markov model No Al Software licensing/
Per-test charges/
Maintenance fees -
Li, H. et al. Community-based ICER per QALY gained Health care system CUA Markov model No Al Software licensing/ 8
care Per-test charges/ =
. 4
Maintenance fees b
Lin, S. et al. Community-based ICER per QALY gained Societal perspective CUA Markov model Standard care Software licensing/ S
outpatient Per-test charges/ -
Maintenance fees 8
Liu, H. et al. Community screening ICER per QALY gained Societal perspective CUA Markov model No Al Per-test charges )
Pham, C. T. et al. Hospital inpatient Incremental cost per Health care system CEA  Others Standard care Maintenance fees DZ>
subacute care admission without an o
injurious fall S
Pickhardt, P. J. et al. Opportunistic imaging ICER per QALY gained Health care system CUA Markov model No Al Per-test charges g
in routine CT scans b
Shen, M. et al. Community screening ICER per QALY gained Health care system CUA Markov model Standard care Software licensing/ ;Z>
program Per-test charges/ >
Maintenance fees %
Srisubat, A. et al. Primary care ICER per QALY gained Societal and health CUA Hybrid: decision  No Al Per-test charges 8
care system tree and other E
perspectives 2
Chawla, H. et al. Primary care ICER per QALY gained Payer's perspective CUA Markov model Another tool  Per-test charges ]5’1
Curl, P. K. et al. Tertiary care ICER per QALY gained Societal perspective CUA Decision tree and No Al Per-test charges/ a
Markov model Maintenance fees =
Ginsberg, G. M. et al. Tertiary care ICER per QALY gained Societal perspective CUA Markov model Standard care Per-test charges
Hill, H. et al. Population screening Incremental net monetary Payer's perspective CUA Markov model No Al Not specified
benefit based on QALYs
Hu, W. et al. Primary care ICER per QALY gained Health care system CUA Markov model No Al Software licensing/
Per-test charges/
Maintenance fees
Kongstad, L. P. et al. National screening ICER per QALY gained Societal and health CUA Others Standard care Software licensing
program care system
perspectives
Lin, S. et al. Community ICER per QALY gained Societal perspective CUA Markov model Standard care Software licensing/

Maintenance fees

(continued on next page)
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Table 2. (continued)
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Author Setting Primary outcome Perspective HEE DAM type Comparator Type of Al cost
type
Liu, W. T. et al. Primary care ICER per QALY gained Health care system CUA Decision tree and No Al Software licensing/
Markov model Per-test charges
Marka, A. W. et al. Tertiary care ICER per QALY gained Payer's perspective CUA Decision tree and Standard care Per-test charges
Markov model
Sun, M. Y. et al. Tertiary care Incremental cost per cure Health care system CEA  Decision tree Standard care Maintenance fees
Tsiachristas, A. et al. Specialist imaging ICER per QALY gained Health care system CUA Decision tree and Standard care Software licensing/
center Markov model Per-test charges/
Maintenance fees
Wang, Y. et al. National screening ICER per QALY gained Societal perspective CUA Decision tree and No Al Not specified
program Markov model
Wuy, X. et al. Urban and Rural ICER per QALY gained Societal perspective CUA Markov model No Al Maintenance fees
Yonazu, S. et al. Tertiary endoscopy ICER per QALY gained Health care system CUA Decision tree and Standard care Software licensing/
unit Markov model Per-test charges
Zanghelini, F. et al. Outpatient ICER per QALY gained Health care system CUA Decision tree Standard care Per-test charges
rehabilitation
Zwerwer, L. R. et al. Tertiary care ICER per QALY gained Health care system CUA Decision tree and Standard care Software licensing/
Markov model Per-test charges/
Maintenance fees
Ahmed, M. et al. Health system ICER per QALY gained Health care system CUA Decision tree Standard care Software licensing/
Per-test charges/
Maintenance fees
Akune, Y. et al. National health ICER per QALY gained Health care system CUA Markov model No Al Per-test charges
checkups
Du, X. et al. Tertiary care ICER per QALY gained Societal and health CUA Decision tree Standard care Per-test charges
care system
Trujillo, J. C. et al. Health system ICER per QALY gained Health care system CUA Decision tree and No Al Software licensing
Markov model
Huang, F. et al. Community Cost per cancer detected; Societal and health CUA Decision tree and No Al Not specified

cost per life-year gained

care system

Markov model

Abbreviations: Al, artificial intelligence; CBA, cost-benefit analysis; CCA, cost-consequence analysis; CEA, cost-effectiveness analysis; CMA, cost-minimization analysis; CUA, cost-
utility analysis; DALY, disability-adjusted life year; DAM, decision-analytic model; HEE, health economic evaluation; ICER, incremental cost-effectiveness ratio; QALY, quality-
adjusted life year; T1D, type 1 diabetics; T2D, type 2 diabetics.
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and 2025. Research activity in this area has
increased steadily, with a marked rise in publica-
tions after 2020. The most frequently evaluated
applications involved Al for diabetic retinopathy
screening, cancer detection, and intensive care
support. These trends highlight growing interest in
clinically relevant AI tools that are approaching
real-world implementation across a range of
healthcare settings.

Compared with the earlier review by Kastrup et al.
[12], which examined 27 studies published before
early 2023, our synthesis included 52 studies, adding
25 more recent articles. This broader scope allowed
us to capture emerging applications and methodo-
logical developments. Both reviews consistently
identified ophthalmology (particularly diabetic reti-
nopathy), oncology (especially colorectal and lung
cancer screening), and cardiovascular diseases (Al-
ECG and CT-based screening) as the most common
focus areas. At the same time, more recent studies
have expanded into additional domains, including
nutrition diagnostics, opioid use disorder prediction
in orthopedic patients, fall prevention in geriatric
care, musculoskeletal pain management, and ICU
ventilation support. In terms of study perspective,
our findings remain consistent with Kastrup et al,,
showing that most studies continue to adopt a
healthcare system viewpoint, with smaller numbers
applying payer perspectives. However, our synthesis
also highlights a gradual shift toward societal per-
spectives, which accounted for one-quarter of the
included studies. These evaluations incorporated
broader elements such as productivity losses and
caregiver burden, reflecting increasing recognition
that the value of Al in healthcare extends beyond
direct clinical and system-level outcomes.

Across all studies, 98% concluded that Al-based
strategies were cost-effective, cost-beneficial, or
cost-saving, while one study reported conditional
findings depending on modeling assumptions.
Although this pattern suggests strong potential
for Al to generate economic value, it also raises
concerns about publication bias. Negative or
inconclusive results may remain unpublished due
to commercial pressures to demonstrate value,
limited journal interest in non-significant findings,
or industry reluctance to disclose unfavorable
outcomes. This imbalance can distort the evidence
base, overstate the economic promise of Al, and
hinder objective policy-making. Addressing this
challenge requires greater transparency through
preregistration of economic evaluations, manda-
tory disclosure of funding sources, and journal
policies encouraging the publication of negative or
neutral results.

A key methodological contribution of our review
was the systematic extraction of Al-related costs as
a dedicated data element. More than 90% of studies
reported explicit cost details, such as annual soft-
ware licensing fees, per-test or per-image charges,
and ongoing maintenance or subscription costs.
This level of reporting is important because it in-
creases transparency, supports value-for-money
assessments, and informs planning for large-scale
implementation. At the same time, we observed
substantial variation in how costs were defined and
reported. Some studies provided detailed break-
downs, whereas others omitted cost data entirely.
Inconsistent reporting undermines comparability
across studies and reduces the replicability of eco-
nomic models. To address this gap, we strongly
recommend the adoption of a universal cost-
reporting framework that explicitly distinguishes
three key components: (1) acquisition or develop-
ment costs (initial capital investment and software
design), (2) implementation or integration costs
(training, IT infrastructure, and workflow adapta-
tion), and (3) recurring or maintenance costs
(licensing, updates, and technical support). Such
categorization would promote consistency and
improve comparability across Al evaluations con-
ducted in different clinical and policy contexts
[34,35].

This review also provides a structured synthesis
of economic evaluations of Al-based healthcare
interventions across a wide range of clinical areas
and regions. Our study systematically extracted
detailed data on evaluation types, decision-analytic
models, perspectives, and Al-specific cost elements.
This granularity allowed for cross-comparisons and
the identification of trends often overlooked in prior
work. Several limitations should be considered
when interpreting these findings. First, heteroge-
neity in study designs, clinical settings, Al appli-
cations, and economic evaluation methods limited
our ability to conduct meta-analysis or generate
pooled estimates. Differences in model structures,
perspectives, cost definitions, and time horizons
mean that direct comparisons across studies should
be interpreted with caution. Second, Al-related
costs were inconsistently reported. While we
extracted detailed cost information when available,
many studies lacked transparency in defining and
itemizing costs, which hindered comparability and
transferability. In particular, the absence of clear
separation between development, implementation,
and maintenance costs may have led to under- or
overestimation of Al's economic value. Third,
most included studies relied on decision-analytic
modeling rather than real-world economic
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evaluations. Although modeling is wuseful for
exploring long-term outcomes, these analyses
depend on assumptions that may not hold in
practice, especially for Al systems that evolve
dynamically and whose performance varies by
context and user engagement. Future research
should therefore prioritize prospective real-world
evaluations, preferably integrated within random-
ized controlled trials or large-scale implementation
studies, to validate model assumptions and more
accurately capture real-world costs and outcomes.
Finally, our review focused on studies published
between 2019 and 2025. Given the rapid pace of Al
development, new applications and updated eval-
uations are likely to emerge quickly, and the evi-
dence base will require ongoing reassessment.

Conclusion

This systematic review shows that Al-based
healthcare interventions are increasingly being
evaluated for their economic value, with the vast
majority of studies reporting cost-effectiveness or
cost savings across a wide range of clinical domains.
While these findings suggest strong potential for Al
to deliver value, they may also reflect publication
bias, as negative or inconclusive results are rarely
published. Methodological variability and incon-
sistent cost reporting further limit comparability
and generalizability. We recommend that future
evaluations adopt a standardized cost framework
separating acquisition/development, implementa-
tion/integration, and recurring/maintenance costs.
Moreover, real-world, prospective studies should
be prioritized to validate model-based assumptions
and strengthen the evidence base. Enhancing
methodological rigor, transparency, and reporting
practices will be essential to generate reliable evi-
dence, support reimbursement decisions, and
ensure that investments in Al deliver sustainable
value to patients and healthcare systems.
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