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Abstract

Gut microbiota has recently gained attention for its role in regulating multiple host pathways and contributing to
disease developments. Fecal metabolomics using liquid chromatography—mass spectrometry (LC—MS) offers a
promising approach to study gut microbial metabolites; however, it remains technically challenging due to the com-
plex, heterogeneous nature of fecal samples and the lack of standardized protocols. This study aimed to establish a
robust and reproducible untargeted fecal metabolomics workflow. We systematically evaluated sample preparation
parameters—including sample amount, extraction solvent, numbers of extraction, and sample-to-solvent ratio—and
assessed method reproducibility. Additionally, we compared three LC—MS data acquisition workflows using 10
samples from inflammatory bowel disease (IBD) patients and healthy controls (HC) to improve the identification of
biologically relevant metabolites. In sample preparation, our results showed that 50 mg of lyophilized feces was
sufficient to capture inter-individual metabolic variation. Additionally, methanol outperformed acetonitrile and
showed comparable results to three binary solvent mixtures. A single extraction with methanol was sufficient, and a
1:20 (w/v) sample-to-solvent ratio maximized feature detection. Among the acquisition methods, data-dependent
acquisition (DDA) with simultaneous MS1 and MS2 scans provided the highest metabolite coverage with acceptable
annotation reliability. In summary, we recommend a single extraction of 50 mg lyophilized feces with 1 mL methanol
and the use of DDA for sample acquisition to ensure comprehensive and reproducible untargeted analysis. This
optimized protocol improves metabolite detection in human feces and offers a practical strategy to support future
studies exploring gut microbial contributions to human health and disease.

Keywords: Analytic sample preparation methods, Feces, Inflammatory bowel diseases, Liquid chromatography-mass
spectrometry, Metabolomics

1. Introduction Dysbiosis of the gut microbiota has been implicated
in the development of chronic diseases, such as
obesity, Parkinson's disease, and Alzheimer's dis-
ease [3,4]. While physically confined to the gastro-
intestinal lumen, gut microbes influence host
physiology through bioactive metabolites that can
circulate systemically [5]. Understanding these mi-
crobial metabolites provides valuable insights into

icrobes, composed of over 100 trillion
microorganisms including bacteria, fungi,
viruses, and archaea, reside in the human gastro-
intestinal tract [1]. Gut microbiota is associated with
regulating multiple host pathways, including im-
mune, signaling, and metabolic pathways [2].
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microbiota function and host physiological modu-
lation. For example, trimethylamine N-oxide
(TMAO) and phenylacetylglutamine (PAGIn) are
gut microbial metabolites whose blood levels are
associated with incident cardiovascular disease
(CVD) risk [6].

Given their direct representation of gut microbial
activity, fecal samples are considered optimal for
gut metabolite analysis. This is due to several rea-
sons: first, a strong association exists between the
gut microbiome and the fecal metabolome, high-
lighting the extensive interplay between microbial
communities and their metabolic products within
the gut [7,8]. Second, the fecal metabolome exhibits
the highest diversity and abundance of metabolic
features compared to plasma and urine [9].
Furthermore, fecal sample collection is simple, non-
invasive, and painless, making it suitable for large-
scale studies. Despites its growing popularity, fecal
metabolomics faces challenges due to the high
complexity and heterogeneity of feces. Although
numerous fecal-extraction protocols have been
proposed [10], the diversity of sample preparation
methods and the lack of heterogeneity evaluation
make it difficult to determine a reliable protocol for
fecal metabolomics.

To effectively analyze these complex fecal sam-
ples, liquid chromatography—mass spectrometry
(LC—MS) is a powerful technique offering high
sensitivity, selectivity, and robust metabolite iden-
tification. Both targeted and untargeted metab-
olomics analysis are employed to analyze gut
metabolites. While targeted methods are designed
to detect specific analytes, they may overlook un-
known but critical compounds. Untargeted metab-
olomics analysis, conversely, provides a more
comprehensive overview of the metabolome.
However, processing and interpreting the vast data
generated by untargeted analysis pose substantial
challenges. Moreover, diverse approaches exist
within untargeted metabolomics workflows, and
different data processing methods can significantly
impact results [11,12]. Hence, establishing a reliable
and efficient workflow for untargeted analysis is
critical.

To address these challenges, this study evaluated
critical parameters in the fecal sample handling
protocol for untargeted fecal metabolomics anal-
ysis. We evaluated the heterogeneity of fecal sam-
ples and optimized the sample preparation
procedure to enhance metabolite coverage and
method reproducibility. Finally, we applied the
optimized protocol to investigate inflammatory
bowel disease (IBD). Moreover, we compared
different untargeted metabolomics data analysis

workflows to enhance the coverage of metabolite
identification. The proposed protocol is expected to
provide more comprehensive and reliable results in
untargeted metabolomic analysis of fecal samples.

2. Materials and methods

2.1. Chemicals and reagents

LC—MS grade acetonitrile (ACN) was purchased
from J.T.Baker (Phillipsburg, NJ, USA). MS-grade
water (H,O) and methanol (MeOH) were obtained
from Scharlau Chemie (Sentmenat, Barcelona,
Spain). Formic acid was purchased from Honeywell
(Charlotte, NC, USA).

2.2. Preparation of fecal samples

Each sample was manually homogenized, and
approximately 5 g of the homogenized feces were
collected for lyophilization. After lyophilization, the
fecal powders underwent a second manual ho-
mogenization step. Each 50 mg aliquot of the
powder was then transferred into a 2 mL centrifuge
tube and stored at —80 °C.

For sample preparation, 1000 uL. of MeOH was
added to 50 mg of lyophilized fecal powder, and the
mixture was extracted using Geno/Grinder 2010
(OPS Diagnostics, Lebanon, NJ, USA) at 1000 rpm
for 3 min, followed by 10 min of sonication. The
extract was centrifuged at 18000 rcf for 10 min at
4 °C. A 750 pL aliquot of the supernatant was
filtered through a 0.2 um filter and stored at —80 °C
until LC—MS analysis.

2.3. LC—=MS analysis

Liquid chromatography was performed on an
Agilent 1290 ultra-high-performance liquid chro-
matography (UHPLC) (Agilent Technologies, Santa
Clara, CA, USA) with a Waters ACQUITY UPLC
HSS T3 column (2.1 x 100 mm, 1.8 pm). The mobile
phase consisted of 0.1% formic acid in water (sol-
vent A) and 0.1% formic acid in acetonitrile (solvent
B) at a flow rate of 0.3 mL/min. The gradient was as
follows: 0—1.5 min, 2% B; 1.5—9 min, 2—50% B;
9—14 min, 50—95% B; 14—17 min, 95% B; and a
3 min re-equilibration to 2% B. The sample reser-
voir and the column oven was set to 4 °C and 45 °C,
respectively. The injection volume was 2 pL.

Mass spectrometry was performed on an Agilent
AdvanceBio 6545XT LC/QTOF MS. Data acquired
in positive and negative electrospray ionization
(ESI) modes with the following parameters: 250 °C
gas temperature, 8 L/min gas flow, 35 psi nebulizer,
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200 °C sheath gas temperature, 10 L/min sheath gas
flow, 4000 V in the positive and negative mode for
capillary voltage, and 120 fragmentation voltage.
Mass range was m/z 50—1500 for both MS and MS/
MS acquisition. For MS scan only, scan rate was
2 Hz. For data-dependent acquisition (DDA), MS
and MS/MS scan rates were 3 Hz and 13 Hz,
respectively, with up to 8 precursors per cycle. For
iterative DDA mode, MS and MS/MS scan rates
were 3 Hz and 6 Hz, respectively, with up to 3
precursors per cycle. Three sequential injections
were conducted, and the iterative exclusion list was
updated after each run. Reference masses
(121.05087 and 922.00978 in positive mode, and
112.98559 and 1033.98811 in negative mode) were
used for mass accuracy checking. Collision energy
was ramped from 10 eV to 40 eV.

2.4. Optimization of fecal sample preparation

For sample heterogeneity evaluation, fecal sam-
ples from five volunteers were lyophilized, and six
aliquots per sample (three of 50 mg and three of
100 mg) were prepared.

For extraction optimization, various parameters
were examined: (1) five solvent systems (MeOH,
ACN, MeOH/H,0 1:1, ACN/H,0 1:1, ACN/MeOH/
H,O 1:1:1), (2) single vs. double extraction, and (3)
sample-to-solvent ratios ranging from 1:20 to 1:80
(w/v). Injection volumes were adjusted to normalize
metabolite concentrations. The number of detected
features and signal intensity distributions were
compared across triplicate analyses for each
condition.

For consistency assessment, fecal samples from
three IBD patients were split into paired portions,
extracted on different days with the same prepa-
ration protocol and subjected to LC—MS analysis
on the same day.

2.5. Collection of fecal samples from patients with IBD

To assess the applicability of the protocol, a total
of ten samples were collected, including five from
healthy controls (HC) and five from IBD patients.
This study was approved by the Research Ethics
Committee of the National Taiwan University
Hospital, and signed informed consent was ob-
tained from all patients.

2.6. Data processing and statistical analysis

LC—MS data were acquired using Agilent Chem-
Station software (Santa Clara, CA, USA), converted

to ABF format using AnalysisBaseFileConverter, and
processed into MS-DIAL for feature detection and
alignment. Peak detection parameters were defined
as follows: an MS1 mass tolerance of 0.025 Da and a
minimum peak height of 6500 amplitude. For peak
alignment, the retention time tolerance was set to
0.2 min, and the MS1 tolerance was 0.015 Da. For peak
identification, the MS-DIAL metabolomics MSP
spectral kit, which includes ESI(+)-MS/MS spectra
from authentic standards, MassBank, MassBankEU,
Fiehn HILIC, MetaboBASE, and RIKEN PlaSMA
authentic standards, was utilized in combination
with in-house databases. Manual curation was
additionally performed to ensure accuracy and
reliability.

Bar chart and Principal Component Analysis
(PCA) plots were conducted using Python version
3.11.7 (Python Software Foundation, Wilmington,
Delaware, USA). Group comparisons of feature
numbers and signal intensity used Student's t-tests
or ANOVA, with Bonferroni correction. The sig-
nificance level was set at p-value <0.05. Pearson
correlation analysis was conducted using Excel
2016. For clinical applications, Mann—Whitney U
test was performed for the univariate test with
using SAS version 9.4 (SAS Institute, Inc.,, Cary,
NC). Statistical significance was defined as
p < 0.015.

3. Results
3.1. Evaluation of the heterogeneity of fecal samples

Fecal samples inherently exhibit heterogeneity.
To assess and minimize this variability, we evalu-
ated samples collected from three distinct sites
(both ends and the middle of each specimen) of
each specimen. We compared interindividual and
intraindividual variation using both 50 mg and
100 mg sample weight. As shown in Fig. 1, both
weights demonstrated clear separation and clus-
tering of HC into five groups. It indicated that the
intraindividual variance was notably smaller than
the interindividual differences. Our findings
confirmed that 50 mg is sufficient to differentiate
fecal samples, and this quantity was selected as
optimal.

3.2. Optimization of fecal sample preparation

To maximize metabolome coverage, we opti-
mized several parameters in sample preparation,
including types of extraction solvent, number of
extractions, and various sample-to-solvent ratios.
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Fig. 1. PCA scores plot showing clustering of the same subjects using (a) 50 mg or (b) 100 mg fecal samples. Different colors represent fecal samples
obtained from different subjects. Fecal samples were obtained from three different locations for each subject (n = 5). HC: healthy controls.

3.2.1. Selection of extraction solvent

To determine the optimal extraction solvent, we
evaluated five solvent systems: two pure solvents,
including MeOH and ACN, and three binary sol-
vent mixtures of MeOH/H,0O (1:1), ACN/H,O (1:1),
and ACN/MeOH/H,O (1:1:1). Fig. 2a shows that
MeOH yielded a significantly higher number of
feature compared to ACN, while all three binary
solvent extraction were comparable to MeOH.
Furthermore, the distribution of average signal in-
tensities across all measured features did not differ
significantly among the five extraction solvents
(data not shown). Based on its superior perfor-
mance and simplicity in sample preparation,
MeOH was selected as the extraction solvent.

3.2.2. Evaluation of the number of extractions

We compared single versus double extractions to
assess whether a single extraction was sufficient for
metabolite recovery. As shown in Fig. 2b, single
extraction yielded significantly more features
compared to double extraction (mean 2358 features
vs. 2246 features; p < 0.001). The small standard de-
viation in both groups may have contributed to the
statistical significance. Additionally, the distribution
of signal intensities did not differ significantly be-
tween the two methods (data not shown). Therefore,
we chose single extraction for subsequent sample
preparation.

3.2.3. Assessment of sample-to-solvent ratios

The sample-to-solvent ratio is crucial, as exces-
sively high concentrations can lead to signal satu-
ration and cause carry-over, while overly diluted
samples may result in fewer detectable features.
We evaluated sample-to-solvent ratio (w/v) of
1:20, 1:40, 1:60, and 1:80. As shown in Fig. 2¢c, the
1:20 (w/v) ratio significantly increased the number

of features (passing Bonferroni-corrected p < 0.001).
Higher dilution led to a clear declines. Ratios
greater than 1:20 were not examined due to the
formation of irremovable brownish precipitates.
Additionally, the overall distribution of signal
intensities did differ markedly across the sample-
to-solvent ratio when considering all detected
features. However, when restricting the comparison
to the shared features detectable at the 1:80 ratio
(right panel), the 1:20 ratio yields significantly
higher intensities than the other ratios (Fig. 2d).
Consequently, we selected the 1:20 (w/v) ratio for
sample preparation.

3.3. Assessment of sample preparation consistency

After optimization of sample preparation, we
aimed to ensure the consistency of the sample
preparation process. Samples from three patients
were extracted on different days and analyzed
using Pearson correlation. Fig. 2e presents two
different scenarios: samples from the same patient
extracted on different days showed much higher
correlation than samples from different patients.
The regression lines further demonstrate this con-
sistency. As summarized in Table 1, correlation
coefficients for the same patient across different
days were all above 0.99, whereas correlations be-
tween different patients were substantially lower.
Collectively, these findings confirm the high con-
sistency, robustness, and reproducibility of the
sample preparation process across extraction days.

3.4. Optimization metabolite workflow for untargeted
fecal metabolomics in IBD research

Different workflows can influence the metabolite
identification in untargeted metabolomics. Fecal
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Fig. 2. The effect of (a) extraction solvent (b) the number of extractions (c) sample-to-solvent ratio on features of metabolomic analysis. Different
colors represent fecal samples obtained from different subjects. Fecal samples were obtained from three different locations for each subject (n = 5).
(d) Signal intensity comparisons of different sample-to-solvent ratio (left panel: all features; right panel: shared features detected at 1:80) (e)
Regression line of analytical results from different days of the same patients and different patients.

samples from five IBD patients and five HC were
prepared wusing the optimized protocol. We
compared three distinct data-acquisition and pro-
cessing workflows. To streamline the comparison,
only metabolites with p < 0.015 were retained.
Finally, we compared the number of significantly
altered metabolites identified by each workflow.

Table 1. The Pearson correlation analysis for analytical results from
different days or sample origins.

Day 1
Patient 1 Patient 2 Patient 3
Day 2 Patient 1 0.997 0.414 0.359
Patient 2 0.410 0.995 0.400
Patient 3 0.366 0.417 0.995

3.4.1. Optimization of MS parameters and the number
of iterative DDA injections

Before comparing workflows, we optimized MS
parameters, specifically collision energy and the
number of iterative DDA injections. For collision
energy, a linear ramp from 10 eV to 40 eV identified
94 metabolites, significantly more than the 67
detected with a fixed 20 eV collision energy.
Consequently, we decided to set a linear collision
energy ramp ranging from 10 eV to 40 eV for
untargeted metabolomics analysis.

To determine the optimal number of iterative
DDA injections needed to capture at least 90% of
metabolite identifications, we performed 10 in-
jections. A total of 408 total spectra were obtained,
with the first four yielding 353, 28, 16, and 5 spectra
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respectively. We observed a diminishing return
with each additional injection. Notably, three in-
jections covered 95% of all identified metabolites,
indicating that further injections were unnecessary.

3.4.2. Comparison of workflows for optimal
metabolite identification

We compared three workflows that differed in
their MS/MS acquisition and reporting strategies
(Fig. 3). In workflow (a), all samples were analyzed
in MS1 full-scan mode to acquire molecular feature,
which were then subjected to quality check and
statistical analysis. Significant features were sub-
sequently subjected to metabolite identification
using iterative DDA on group-specific pooled QC
samples. In contrast, workflow (b) employed a sin-
gle-run DDA for all samples, with direct online
database matching and metabolite identification
performed prior to statistical analysis. Workflow (c)
followed a similar strategy to (b) but was further
supplemented with iterative DDA on group-specific
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pooled QC samples to enhance metabolite
coverage. Table 2 summarized the number of mo-
lecular features, significant features or metabolites,
and identified metabolites across the three work-
flows. Finally, a total of 51 statistically significant
metabolites were identified, with 23, 45, and 42
significant metabolites identified in workflows (a),
(b), and (c), respectively. Specifically, the number of
Level 1 identifications was comparable, with five
metabolites commonly detected across all work-
flows (Fig. 4a). However, workflows (b) and (c)
demonstrated a clear advantage in the number of
Level 2 identifications, with at least ten additional
significant metabolites compared to workflow (a)
(Fig. 4b). Interestingly, while workflow (c) incorpo-
rated QC iterative DDA to maximize metabolite
identification, the incremental gain in unique
metabolite coverage over workflow (b) was limited.
Considering both metabolite coverage and acqui-
sition efficiency, workflow (b) was selected for
subsequent data acquisition and processing. Fig. 5

Metabolite identification
with QC data

Result interpretation

=

Result interpretation

Statistical analysis of
sample data
sample data

Result interpretation

Statistical analysis of
sample data

Fig. 3. Three workflows for untargeted metabolomics analysis.

Table 2. Summary of molecular features, significant features, and identified metabolites across the three untargeted metabolomics workflows.

Number

Workflow (a)

Workflow (b) Workflow (c)

Molecular features 42,243
Molecular features after data pre-processing 4943
(background subtraction and quality check)

33,124
Not applicable

35,493
Not applicable

Identified metabolites Not applicable 818 840
Significant features®/metabolites® 3192 45° 42°
Identified metabolites 23 Not applicable Not applicable

The letters a and b refer to features and metabolites, respectively
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Fig. 4. Venn diagram of significantly identified metabolites (p < 0.015) between HC and IBD patients across three workflows. (a) Level 1 identi-
fication and (b) level 2 identification. HC: healthy controls; IBD: Inflammatory Bowel Disease.

presents the 45 significant metabolites identified by
workflow (b), of which 38 were elevated in IBD
patients and 7 were increased in healthy volunteers.
Among these, eight metabolites were confidently
identified as Level 1 using our in-house standards:
adenine (fold change [FC]: 253.3), p-courmaric acid
(FC: 7.0), desaminotyrosine (FC: 5.5), mandelic acid
(FC: 4.4), itaconic acid (FC: 3.7), 2-hydroxy-2-meth-
ylbutyric acid (FC: 3.5), N-Acetyl-L-methionine (FC:
2.7), and 5-methoxytryptophan (FC: 2.1). While
these Level 1 metabolites represent confidently
identified metabolic changes, the most prominent
fold changes among IBD patients were observed for
the therapeutic agent mesalazine (FC: 1825.1) and
its major metabolite, N-acetyl mesalazine (FC:
1336.1), highlighting the ability of the workflow to
capture disease- and treatment-associated meta-
bolic signatures.

4. Discussion

In recent years, various methods for fecal sample
preparation have emerged, yet a standardized
workflow has not been established [10]. In our
study, we aimed to establish an effective and reli-
able untargeted metabolomics protocol, covering
sample input quantity, preparation methods, veri-
fication of sample preparation consistency, and data
acquisition and processing workflows.

Fecal samples serve as the ideal substrate for gut
metabolome analysis. However, fecal samples are
inherently heterogeneous. Gratton et al. showed
significant differences between the entire fecal
sample homogenate and the specific topographical
positions [13]. Trost et al. found that spot sampling
can introduce substantial metabolic variability [14].
Another study indicated that each fecal sample as
large as 1 g was necessary to analyze SCFAs and
distinguish between different sampling sites from
the same individual [15]. These studies highlight
the need to homogenize and evaluate how sample
weight affects measurement variability, particularly

considering that interindividual differences were
substantially greater than intraindividual variation.
By assessing clustering patterns in the PCA score
plot, we confirmed that 50 mg is an adequate and
reliable sample weight for untargeted metab-
olomics. These results reflected that even 50 mg of
feces contains sufficient metabolite diversity for
PCA to cluster an individual's samples tightly to
address the intrinsic local heterogeneity of fecal
specimens. The finding is consistent with the rec-
ommendations proposed by Kelly et al. [16].

We also evaluated critical parameters for fecal
sample extraction. First, we considered the extrac-
tion solvent. Previous studies have commonly used
water, ACN, MeOH, or their mixtures [16—19].
However, a systematic comparison of these solvents
and their combinations has not been thoroughly
investigated. Therefore, we first compared five
extraction solvents and found that using only ACN
significantly decreased the number of detected
features. We attribute this to our targets being
small, polar metabolites rather than nonpolar
compounds. As a result, more nonpolar metabo-
lites, which lack hydrogen-bonding capacity, may
exhibit lower extraction efficiency. A study assess-
ing extraction solvents for panda feces exhibited a
similar trend [20]. Second, we evaluated the num-
ber of extractions and found that a single extraction
is sufficient to extract most metabolites compared to
a double extraction. Third, we assessed the sample-
to-solvent ratios (w/v) from 1:20 (w/v) to 1:80 (w/v),
and determined 1:20 (w/v) as the optimized ratio.
This study did not test ratios lower than 1:20 (w/v)
due to the formation of brownish precipitates.
Similarly, the comparison results reported by Kelly
et al. showed that a 1:20 (w/v) ratio yielded a
significantly higher mean number of m/z features
and putatively identified metabolites compared to
1:5 and 1:10 ratios [16]. Finally, to verify the
robustness of the optimized sample preparation
protocol, we evaluated its consistency across
different extraction days. High intra-patient
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Fig. 5. Significant metabolites (n = 45) identified in workflow B.

on the optimal workflow for metabolite identifica-
tion. Therefore, we proposed three distinct work-
flows to figure out the most effective and reliable
one. Before comparing them rigorously, we opti-
mized our mass spectrometry parameters to ensure
fair and meaningful evaluation. Initially, to ensure
that the collision energy is appropriate for maxi-
mizing the number of identified metabolites, we

correlation coefficients (r > 0.99) confirmed its sta-
bility and reproducibility, whereas low inter-patient
correlations reflected biological variability.
Previous studies have demonstrated various ap-
proaches to data processing for untargeted metab-
olomics workflows, including using different
acquisition modes such as full scan, targeted DDA,
and DDA [12,21]. Nonetheless, no consensus exists
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selected two settings commonly referenced in the
literature: a fixed collision energy and a linear
collision energy ramp within a widely used range
[22—24]. A ramp from 10 eV to 40 eV and a fixed
collision energy of 20 eV were employed to balance
fragmentation coverage and spectral quality, with
the former resulting in the identification of more
metabolites. Likewise, we evaluated the number of
iterative DDA injections required to capture most
metabolites and observed a progressive decline in
spectra with each injection, with spectral number
becoming negligible after the third injection. Taken
together, the 10—40 eV ramp and three injections
constituted an effective balance between coverage
and efficiency.

To further evaluate different data acquisitions
and processing strategies, we used an IBD study to
compare three workflows. To reduce the complexity
of data processing, we only focused on metabolites
that showed significant differences (p < 0.015).
Workflow (a), which performs statistical analysis
prior to metabolite identification, effectively re-
duces the need for extensive manual inspection.
Notably, this approach uniquely identified two
Level 1 metabolites, while three metabolites exclu-
sively found in other workflows were also detected
in workflow (a) but excluded by the significance
threshold. These observations suggest that full MS1
scans provide high-quality data for untargeted
metabolomics acquisition. However, this workflow
has several limitations. First, the large number of
detected features increases the burden of multiple
testing correction, which can obscure true positives
and highlights the need for a better feature-
reduction strategy before statistical analysis. Sec-
ond, a huge difference was observed in Level 2
identification between workflows, with 16 metabo-
lites identified in workflow (a) versus 37 in work-
flow (b). The higher number in workflow (b) may be
attributed to the use of sample DDA acquisition.
Third, the overall identification rate was also low—
only 5.0% more identifications—reflecting a com-
mon challenge in untargeted metabolomics where
annotation rates remain low [25,26]. It remains un-
clear whether the missing identifications were due
to statistically insignificant features or simply to a
failure in annotation. Additionally, a post-statistical
targeted MS/MS acquisition workflow was evalu-
ated but raised concerns about false identifications
(data not shown). Between MS and MS/MS runs,
metabolite degradation and potential retention
time shifts reduced confidence in matching MS/MS
spectra to the initially MS1 features. Taken
together, both the limited gain from QC-based
iterative DDA and the reliability issues with post-

statistical targeted MS/MS led us to exclude these
strategies from our final workflow selection.

In contrast, DDA is commonly employed in
untargeted metabolomics due to its ability to
simultaneously acquire both MS and MS/MS
spectra within a single run. However, one inherent
limitation of conventional DDA is that ions with low
MS abundance may not be selected for fragmen-
tation, resulting in a lack of corresponding MS/MS
spectra [11]. To address this issue, we incorporated
an iterative DDA strategy in workflow (c) to
improve coverage of low-abundance features and
enhance overall metabolite identification. However,
the results demonstrated that the iterative DDA
strategy in workflow (c) did not yield additional
benefits. A careful evaluation revealed that the
issue was due to sample pooling, which diluted the
signals of high-intensity metabolites—especially
those found in only a few samples. Even with iter-
ative DDA acquisition, this dilution caused the
signal intensity to be insufficient for MS/MS
acquisition. Conversely, a single-sample DDA was
successful because the metabolite's high-intensity
signal was not diluted, remaining strong enough to
trigger MS/MS acquisition for library matching.
Notably, we applied conventional iterative DDA
approach without further optimizing the settings
across injections, such as adjusting acquisition
thresholds based on prior runs. Future studies that
dynamically optimize parameters for each injection
may enhance the detection of low-abundance me-
tabolites and improve MS2 coverage.

This study used fecal samples collected from 5
IBD patients and 5 HC to select an optimal untar-
geted metabolomics workflow. The results sug-
gested using workflow (b), simultaneous
acquisition of MS1 and MS2 data in a single DDA
run. We observed that the concentrations of 45
metabolites differed significantly between the IBD
and HC groups. Among these, mesalazine and its
metabolite, N-acetyl mesalazine, were found at
higher concentrations in IBD patients. This finding
is consistent with its therapeutic use in IBD treat-
ment, as many patients were prescribed medica-
tions containing this compound [27]. Furthermore,
itaconic acid, with a Level 1 identification, was
found at elevated levels in the IBD samples. Ita-
conic acid is an immunometabolite derived from
activated macrophages, produced through the
decarboxylation of the TCA cycle intermediate cis-
aconitic acid by the enzyme aconitate decarbox-
ylase 1 (ACOD1) [28,29]. Previous studies have
shown that ACODL1 is significantly upregulated in
inflamed intestinal tissues of IBD patients [30].
Consistently, our workflow detected elevated levels
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Fig. 6. The proposed analytical protocol for untargeted metabolomics.

of itaconic acid in IBD samples, demonstrating
its capability to capture biologically relevant
and disease-associated metabolic alterations. Ulti-
mately, these results confirm that a single-run DDA
workflow is an effective method for identifying
biologically and therapeutically relevant metabolic
changes associated with IBD.

The proposed analytical protocol for untargeted
metabolomics is shown in Fig. 6. Our results sug-
gest using 50 mg lyophilized fecal sample extract
with 1000 pL. MeOH in a single extraction to
enhance metabolite coverage. We also recommend
the simultaneous acquisition of MS1 and MS2 data
in a single DDA run to obtain more reliable results
in untargeted metabolomics.

In conclusion, we evaluated fecal sample hetero-
geneity, optimized preparation procedures, and
demonstrated high reproducibility, thereby estab-
lishing a reliable and robust fecal sample prepara-
tion and LC—-MS workflow for untargeted
metabolomics. In the future, we anticipate that this
protocol will assist in identifying critical metabolites

associated with human diseases, thereby increasing
our understanding of disease mechanisms and the
role of gut microbial metabolites in diseases.
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