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empagliflozin ameliorates diabetic cardiomyopathy
by activating the AMPK/TFEB signaling pathway
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Abstract

The highly selective SGLT2 inhibitor (SGLT2i) is reported to have beneficial effects on diabetic cardiac hypertrophy;
however, the molecular mechanisms underlying the cardioprotection of SGLT2i are not fully understood. In this study,
we investigated the impact of the SGLT2 Inhibitor empagliflozin (EMPA) on diabetic hearts and its regulatory
mechanisms in high-fat-diet (HFD)- and streptozotocin (STZ)-treated rats. Male rats orally administered HFD/STZ
treatment for eight weeks, with or without EMPA (10 mg/kg), were used as our in vivo model. Hematoxylin and eosin
(H&E) staining was used for histological examination. Western blot analysis and immunohistochemistry were used to
analyze the expression of proteins. Daily EMPA administration prevented the HFD/STZ treatment-induced cardiac
hypertrophy by activating the AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated upre-
gulation of autophagy- and antioxidant-related proteins. Moreover, EMPA treatment decreased oxidative stress by
increasing the antioxidant capacity and protein expression of antioxidant proteins while downregulating the levels of 4-
hydroxy-2E-nonenal in the hearts of diabetic rats. Furthermore, EMPA treatment decreased cardiomyocyte apoptosis
and increased heart mitochondrial function. The AMPK/TFEB signaling-mediated increase in autophagy, antioxidant
capacity, mitochondrial function, and attenuated cardiomyocyte apoptosis may be crucial in the anti-hypertrophic effect
conferred by SGLT2i. Our clinical implications suggest a novel pharmacological approach for treating diabetic car-
diomyopathy by modulating autophagy and redox homeostasis.

Keywords: AMP-activated protein kinase, Diabetic cardiomyopathy, Empagliflozin, Sodium-glucose cotransporter two
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1. Introduction significant cardiovascular complications [5,6],

characterized by abnormal thickening and

D iabetes mellitus (DM) is a metabolic disorder
characterized by chronic hyperglycemia due
to insufficient insulin production (type 1) or insulin
resistance (type 2 diabetes, T2DM) [1,2]. Prolonged
hyperglycemia leads to serious complications,
including cardiovascular diseases, nephropathy,
neuropathy, and retinopathy [3—5]. Among these,
cardiac hypertrophy represents one of the most

enlargement of the heart muscle that substantially
increases the risk of heart failure in diabetic pa-
tients [5—8]. The pathogenesis of diabetic cardiac
hypertrophy involves complex mechanisms [7,8]
driven primarily by metabolic disturbances from
hyperglycemia and insulin resistance [9—11].
Chronic hyperglycemia promotes the formation
of advanced glycation end-products (AGEs),
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contributing to oxidative stress, inflammation, and
myocardial remodeling [6,7,12]. Additionally, insu-
lin resistance alters lipid metabolism, leading to
myocardial lipid accumulation (lipotoxicity), which
induces cardiomyocyte death and hypertrophy
while impairing cardiac function [13,14]. Under-
standing the underlying mechanisms and implica-
tions of diabetic cardiac hypertrophy is crucial for
developing effective preventive and therapeutic
strategies.

Autophagy is a highly conserved catabolic pro-
cess that degrades unnecessary or dysfunctional
cellular components through lysosomes [15],
maintaining cellular homeostasis by recycling
cytoplasmic contents, including damaged proteins
and organelles [16]. In cardiovascular cells, auto-
phagy plays a crucial protective role for car-
diomyocytes under stress conditions, such as
hyperglycemia and hyperlipidemia [17,18]. How-
ever, autophagy dysregulation occurs in diabetic
cardiomyocytes [6,16,19]. Studies have shown that
hyperglycemia [16] and dyslipidemia [20] inhibit
autophagy, while insulin resistance can lead to
autophagy hyperactivation, which hinders car-
diomyocyte survival [6,16,17,21]. This dual effect
suggests that regulating autophagy represents a
potential therapeutic strategy for improving dia-
betic cardiomyopathy and heart failure [19].

Transcription factor EB (TFEB) is a member of the
microphthalmia family of transcription factors [22]
that plays a crucial role in cellular processes [23].
TFEB overexpression increases lysosome numbers
and lysosomal enzyme activity, elevating lysosomal
catabolic function [24]. It can bind to autophagy
gene promoter regions to induce autophagosome
biogenesis and autophagosome-lysosome fusion
[25], thereby stimulating both lysosome generation
and autophagy activation. Research indicates that
glucolipotoxicity inhibits autophagy and damages
cardiomyocytes, potentially through reduced lyso-
some and intracellular TFEB content [26].
Increasing TFEB expression may promote lip-
ophagy to combat obesity and metabolic syndrome
[27], suggesting the essential role of TFEB in car-
diomyocyte autophagy.

Glucose reabsorption occurs through sodium-
glucose co-transporters (SGLTs) in kidney tubules
[28]. SGLT2 is responsible for 80—90% of glucose
reabsorption, while SGLT1 handles 10—-20%
[29—33]. SGLT2 inhibitors (SGLT2i) reduce glucose
reabsorption, lowering blood sugar independently
of insulin secretion [34—36]. FDA-approved SGLT2i
include canagliflozin, dapagliflozin, empagliflozin,
and ertugliflozin [34]. Cardiovascular safety
outcome trials demonstrate that SGLT2i reduce

Abbreviations

a-SMA a-smooth muscle actin
B-MHC B-myosin heavy chain

4HNE 4-hydroxy-2E-nonenal

ANP atrial natriuretic peptide
AMPK AMP-activated protein kinase
Bcl-2 B-cell lymphoma 2

BNP B-type natriuretic peptide
CVD cardiovascular disease

EMPA Empagliflozin

H&E hematoxylin and eosin
HbA1lc Glycated hemoglobin

HF heart failure

HFD High-fat diet

LVW left ventricular weights
SGLT2i Sodium-glucose co-transporter two inhibitor
STZ Streptozotocin

T2DM Type 2 diabetes mellitus
TFEB Transcription factor EB

hospitalization for heart failure by 30—35% in dia-
betic patients [37—40]. Proposed mechanisms
include empagliflozin's ability to shift ATP pro-
duction from fatty acid oxidation toward glucose
oxidation [41] and dapagliflozin's reduction of
interstitial fluid without affecting arterial blood
filling [42]. Despite these clinical benefits, the pre-
cise mechanisms underlying the cardioprotective
effects of SGLT2 inhibitors (SGLT2i) remain un-
clear. Given the vital role of autophagy in car-
diomyocytes and its potential relationship with
TFEB, investigating the impact of SGLT2 inhibitors
(SGLT2i) on autophagy and TFEB expression in
cardiac hypertrophy represents an important
research direction for understanding these thera-
peutic benefits and developing targeted in-
terventions for diabetic cardiac complications. In
this project, we investigated the effects of SGLT2
inhibitors (SGLT2i) on autophagy and TFEB
expression in cardiac hypertrophy.

2. Materials and methods

2.1. Reagents

EMPA was purchased from Boehringer Ingelheim
(Rhein, Germany). Rabbit antibodies for AMPK
(A12718), TFEB (A7311), and mouse antibody
against B-actin (AC004) were purchased from
ABclonal (Woburn, MA, USA). Rabbit antibody for
p-TFEB (Ser211) (AF3708) from Affinity Biosciences
(OH, USA). Streptozotocin (STZ) was obtained from
Sigma—Aldrich (Saint Louis, MO, USA). Rabbit
antibody against protein phosphatase 2B (PP2B, sc-
9070) was obtained from Santa Cruz Biotechnology
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(Santa Cruz, CA, USA). Mouse antibody against 4-
hydroxy-2E-nonenal (4-HNE, MAB3249) and goat
antibody against glutathione peroxidase (GPx,
AF3798) were obtained from R&D Systems (Min-
neapolis, MN, USA). Rabbit antibody against heme
oxygenase-1 (HO-1, ADI-SPA-895) was obtained
from Assay Designs (Plymouth Meeting, PA, USA).
Rabbit antibodies against the mammalian target of
rapamycin (mTOR, #2983), microtubule-associated
protein 1A/1B-light chain (LC3, #4108), seques-
tosome 1 (p62, #5114), and p-AMPK were purchased
from Cell Signaling Technology (Danvers, MA,
USA). Rabbit antibodies against superoxide dis-
mutase 1 (SOD1, ab13498), SOD2 (ab13533), B-cell
lymphoma 2 (Bcl-2, ab59348), caspase-3 (ab32351)
and mouse antibody for cytochrome c oxidase
subunit 1 (MTCO1, ab14705), ATP assay kit
(ab83355), and total antioxidant capacity fluoro-
metric assay (ab65329) kits were obtained from
Abcam (Cambridge, MA, USA).

2.2. Animal preparation

Male Whistar-Kyoto rats (160—200 g) were
allowed free access to rat chow and water and
housed two per cage in a 12-h light/dark cycle
animal room. Periodic checks of the cages and body
weights ensured that the food was administered
appropriately. The temperature of the animal
breeding room was controlled at 20 + 2 °C. The
Animal Care and Use Committee of National
Taiwan University approved the study protocol.
The induction steps of T2DM were as follows: rats
were fed a high-fat diet (HFD; D12331; 58% fat, 16%
protein, and 26% carbohydrate) for four weeks.
Then STZ (40 mg/kg) was injected twice intraperi-
toneally (i.p.). One week after the injection of STZ,
fasting blood glucose (FBG) was detected. The
fasting time was 12—16 h, but the rats had free
access to water. FBG was detected by collecting a
small drop of blood from the tail, applying it to
blood glucose test paper (Ascensia ELITE Test
Strips), and then using a blood glucose test ma-
chine (Ascensia ELITE XL Blood Glucose Meter,
Bayer, Mishawaka, IN, USA). Rats with FBG value
greater than 140 mg dL " were confirmed to have
successfully induced T2DM and would be
randomly divided into different groups: (1) T2DM
group (HFD/STZ); (2) T2DM treated with empa-
gliflozin group (HFD/STZ + EMPA). EMPA was
orally given 10 mg/kg/day for eight weeks [43—45].
During this step, rats were fed with standard chow
(Fig. 1A). All rats were humanely euthanized at the
same age to collect blood and heart for further
experiments.

2.3. Histological examination

The hearts were fixed with 10% formalin and
embedded in paraffin. Paraffin blocks were cut
into 8 pm sections, dewaxed with Hemo-De, and
rehydrated from alcohol to deionized water for
further staining. For hematoxylin and eosin (H&E)
staining, the sections were stained with hematox-
ylin at 25 °C for 30 s and then stained with eosin
Y at 25 °C for 20 s. After staining, sections were
dehydrated in ascending alcohol solutions and
mounted with mounting gel. For immunohisto-
chemistry, the deparaffinized sections were incu-
bated in retrieval buffer (10 mM sodium citrate,
0.05% Tween 20, pH 6.0) for 10 min at 37 °C. The
sections were blocked with 2% BSA for 60 min at
37 °C and incubated with primary antibody for 2 h
at 37 °C, and then with the FITC-conjugated sec-
ondary antibody overnight at 4 °C. Images were
observed under a Zeiss LSM 880 confocal micro-
scope with Zen software (Carl Zeiss AG, Oberko-
chen, Germany).

2.4. Western blot analysis

The hearts were lysed in immunoprecipitation
lysis buffer (50 mM Tris pH 7.5, 5 mM EDTA,
300 mM NacCl, 1% Triton X-100, 1 mM phenyl-
methylsulfonyl fluoride, 10 pg/mL leupeptin, 10 ng/
mL aprotinin, and phosphatase inhibitor cocktail II
and III) and the total protein was extracted. Ali-
quots of protein (50 pg) mixed with 5 pL loading
dye (250 mM Tris HCl, pH 6.8, 500 mM dithio-
threitol, 10% SDS, 50% glycerol, and bromophenol
blue) were separated on 8%, 12% SDS gels and
then transblotted onto the PVDF membrane (Mil-
lipore, Bedford, MA, USA). After being blocked
with 5% skim milk, the blotting membrane was
incubated with the primary antibodies, followed
by the corresponding horseradish peroxidase-
conjugated secondary antibodies. The protein
bands were visualized using an enzyme-linked
chemiluminescence detection kit (Perkin, Waltham,
MA, USA), and the band density was measured using
the quantitative software (TotalLab, Newcastle upon
Tyne, UK).

2.5. Terminal deoxynucleotidyl transferase UTP nick end
labeling (TUNEL) assay

The TUNEL assay was conducted using a Situ
Cell Death Detection Kit obtained from Roche
(Basel, Switzerland). In brief, formalin-fixed tissue
sections were dewaxed and subsequently per-
meabilized by incubating sections in 0.1% Triton X-
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Fig. 1. Schematic diagram of the experimental procedure to establish a rat model of diabetes mellitus (DM). (A) The induction steps were as
follows: rats were fed a high-fat diet (HFD; D12331; 58% fat, 16% protein, and 26% carbohydrate) for four weeks. Then, streptozotocin (STZ;
40 mg/kg) was administered intraperitoneally (i.p.) twice. One week after the STZ injection, fasting blood glucose (FBG) was measured after
12—16 h of fasting with free access to water. Rats with FBG values greater than 140 mg/dL were considered successfully induced with T2DM and
randomly divided into different groups: (1) normal chow diet group; (2) T2DM group (HFD/STZ); (3) T2DM treated with empagliflozin group
(HFD/STZ + EMPA). Empagliflozin (EMPA) was orally administered at 10 mg/kg/day for eight weeks. During this step, rats were fed a standard
chow diet. Rats were fed a high-fat diet (HFD) or a control diet for 4 weeks, followed by streptozotocin (STZ) injection to induce diabetes, and then
treated daily with EMPA (10 mg/kg) for 8 weeks. (B and C) The body and left ventricular weights are in three groups. (D) Fasting blood glucose was
evaluated in three groups. (E) Plasma insulin levels were quantified across the three groups. (F—H) Plasma levels of 3-hydroxybutyric acid, ace-
toacetic acid, and total ketone bodies were measured in the three groups. Data are expressed as mean + SEM from three rats.

100 at 37 °C for 5 min. After permeabilization, the
sections were blocked in 2% BSA, and then the
TUNEL reaction mixture was added to the sections
at 37 °C for 60 min. Images were observed under a
Leica DMIRB Microscope (Deer Park, IL, USA) with
LAS V4.12 software (Wetzlar, Germany).

2.6. Statistical analysis

The results were presented as the mean + SEM.
The Mann—Whitney U test was used to compare
two independent groups. SPSS software v8.0 (SPSS
Inc., Chicago, IL, USA) was used for all statistical
analyses. Differences were considered statistically
significant at p < 0.05.

3. Results

3.1. Effect of EMPA on the heart of HFD/STZ-induced
diabetic rats

To elucidate the potential effects of EMPA on
hypertrophy of rats heart hypertrophy, we used
regular chow diet and HFD/STZ-induced diabetes
in rats as an in vivo model (Fig. 1A). The body
weight was decreased in both HFD/STZ-induced
diabetic rats groups compared with standard diet
group (Fig. 1B). And the left ventricular weight was
reduced and fasting blood glucose was increased in
HFD/STZ-induced diabetic rats groups; however,
oral administration of EMPA to HFD/STZ-induced
diabetic rats increased left ventricular weight and
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reduced fasting blood glucose (Fig. 1C and D).
Moreover, plasma insulin levels were reduced in
both HFD/STZ-induced diabetic rat groups
compared with the standard diet group. However,
oral administration of EMPA to HFD/STZ-induced
diabetic rats increased plasma insulin levels
(Fig. 1E). In addition, plasma levels of 3-hydroxy-
butyric acid, acetoacetic acid, and total ketone
bodies were elevated in HFD/STZ-induced diabetic
rats treated with vehicle. EMPA treatment reduced
acetoacetic acid and total ketone body levels in
HFD/STZ-induced diabetic rats compared with the
vehicle-treated group (Fig. 1F and G). Histological
analysis revealed increased cross-sectional areas
and diameters in cardiomyocytes from rats with
HFD/STZ-induced diabetes. The increased car-
diomyocyte cross-sectional areas and diameter in
HFD/STZ-induced diabetic rats were attenuated by
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treating with EMPA (Fig. 2A and B). Furthermore,
the protein levels of B-MHC, ANP, and BNP, three
hypertrophy markers, were increased in HFD/STZ-
induced diabetic rats treated with vehicle compared
with the standard diet group. However, EMPA
treatment decreased the levels of all three hyper-
trophy markers in HFD/STZ-induced diabetic rats
compared with the vehicle-treated group (Fig. 2C).
Additionally, WGA staining analysis revealed that
the cardiomyocyte cross-sectional areas were
increased in HFD/STZ-induced diabetic rats treated
with vehicle compared with the standard diet
group. In contrastt EMPA treatment reduced
cardiomyocyte cross-sectional areas in HFD/STZ-
induced diabetic rats compared with the vehicle-
treated group (Fig. 2D). Moreover, the analysis of
a-SMA protein level and Picro-Sirius red staining
analysis demonstrated increased cardiac fibrosis in
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Fig. 2. Empagliflozin (EMPA) suppressed cardiomyocyte hypertrophy in HFD/STZ-induced diabetic rats. Rats were fed an HFD or control
diet for 4 weeks, followed by STZ injection to induce diabetes, and then treated daily with EMPA (10 mg/kg) for 8 weeks. (A and B) Representative
histological images of myocardial sections stained with hematoxylin and eosin (H&E). (A) Cross-sectional sections of hearts and quantitative
analysis of cardiomyocyte area. (B) Longitudinal sections of hearts and quantitative analysis of cardiomyocyte diameter. The black lines indicate the
measured diameters. Boxes in panels A and B (left) indicate the regions illustrated by the high-magnification images (right). (C) Western blot
analysis of protein levels of 8-myosin heavy chain (8-MHC), atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and B-actin in the
heart. (D) Representative histological images of myocardial sections stained with wheat germ agglutinin (WGA) staining. Data are expressed as

mean + SEM from three rats.
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HFD/STZ rats treated with vehicle compared with
the standard diet group. However, the cardiac
fibrosis was decreased in HFD/STZ rats orally
treated with the EMPA group compared with the
vehicle group (Fig. 3A and B). These findings indi-
cate that EMPA effectively attenuates cardiac hy-
pertrophy and fibrosis in the T2DM rat model.

3.2. EMPA-activated AMPK/TFEB-mediated autophagy
and antioxidant capacity in the heart of HFD/STZ-
induced diabetic rats

Autophagy has been observed in the hearts of
diabetic animal models in previous studies [6,16,19].
We then investigated whether EMPA induced
autophagy in the hearts of rats with HFD/STZ-
induced diabetes. The results of western blot
analysis suggested that EMPA induced autophagy
flux, evidenced by an increase in the protein levels
of p-AMPK and PP2B, coupled with the reduction
in the levels of mTOR, p-TFEB, LC3, and p62
(Fig. 4A). Immunofluorescence staining suggested
that EMPA promoted the nuclear translocation of
TFEB while decreasing the cytosolic levels of

A

Normal HFD+STZHFD+STZ
chow diet +vehicle +EMPA

p-TFEB as compared to the vehicle-treated group
(Fig. 4B). Moreover, cardiac hypertrophy progres-
sion is often associated with dysregulated reactive
oxygen species (ROS) production and oxidative
stress [46]. We next explored whether EMPA
decreased oxidative stress in the hearts of HFD/
STZ-induced diabetic rats. Western blot analysis
revealed that the administration of EMPA
decreased the levels of 4-HNE (Fig. 5A). Further-
more, EMPA increased antioxidant capacity, and
the protein levels of HO-1, SOD1, SOD2, and GPx
in the heart of HFD/STZ-induced diabetic rats
(Fig. 5B and C). These findings suggest that EMPA
induces autophagy and diminishes HFD/STZ-
induced diabetic cardiac oxidative stress by modu-
lating the expression of proteins involved in auto-
phagy and the antioxidant detoxification system.

3.3. EMPA attenuated cardiac apoptosis and promoted
mitochondrial function in the heart of HFD/STZ-induced
diabetic rats

Cardiomyocyte apoptosis has been observed in
the hearts of diabetic animal models in previous
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Fig. 3. EMPA attenuated cardiomyocyte fibrosis in HFD/STZ-induced diabetic rats. Rats were fed an HFD or control diet for 4 weeks, followed
by STZ injection to induce diabetes, and then treated daily with EMPA (10 mg/kg) for 8 weeks. (A) Western blot analysis of protein levels of a-
smooth muscle actin (a-SMA) and (-actin in the heart. (B) Representative histological images of myocardial sections stained with Picro-Sirius red

staining. Data are expressed as mean + SEM from three rats.
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Fig. 4. Effects of EMPA on AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-dependent autophagy in the heart of
HFD/STZ-induced diabetic rats. Rats were fed an HFD for 4 weeks, injected with STZ to induce diabetes, and then treated daily with EMPA
(10 mg/kg) for 8 weeks. (A) Western blot analysis of protein levels of the mammalian target of rapamycin (mTOR), phosphorylated and total
AMPK, protein phosphatase 2B (PP2B), phosphorylated and total TFEB, microtubule-associated protein 1 light chain 3 (LC3), sequestosome 1 (p62),
and (-actin in the heart. (B) Immunohistochemistry of p-TFEB and TFEB in heart sections. Data are expressed as mean + SEM from three rats.

studies [37,38]. Next, we detected the effect of
EMPA on cardiac apoptosis. Western blot analysis
showed that EMPA inhibited caspase-3 activity
with no observable change in Bcl-2 protein
expression (Fig. 6A). Moreover, the administration
of EMPA significantly decreased the number of
TUNEL-positive cells in the heart compared with
that of the vehicle group (Fig. 6B). Since mito-
chondrial function in the heart plays a pivotal role
in cardiac energy supply [47,48], we further
explored the effect of EMPA on cardiac mitochon-
drial function. Our results revealed that EMPA
increased the number of mitochondria, as evi-
denced by the expression of MTCO1, a key enzyme
in the mitochondrial electron transport chain.
Additionally, EMPA significantly increased the
cardiac ATP production compared with the vehicle
group of HFD/STZ-induced diabetic rats (Fig. 7A).
Immunofluorescent images corroborated these
findings (Fig. 7B). Collectively, these results suggest
that EMPA attenuates the diabetic cardiomyopathy
by decreasing the apoptosis of cardiomyocytes and

promoting mitochondrial function in the heart of
HFD/STZ-induced diabetic rats (Fig. 8).

4. Discussion

SGLT2 inhibitors protect against metabolic stress-
induced cardiomyopathy [39—42], but their molec-
ular mechanisms remain incompletely understood.
Our study provides several novel contributions
advancing SGLT2i mechanism understanding: (1)
TFEB-specific mechanistic pathway: While AMPK
activation by SGLT2i has been reported, we first
demonstrate that TFEB nuclear translocation serves
as a critical downstream AMPK effector mediating
cardioprotective effects of EMPA in diabetic cardiac
hypertrophy. (2) Integrated pathway characteriza-
tion: We wuniquely demonstrate the complete
AMPK-TFEB-autophagy signaling cascade in vivo,
showing how EMPA-induced AMPK activation
leads to TFEB nuclear translocation, subsequently
upregulating autophagy-related and antioxidant
proteins coordinately. (3) Functional outcomes
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linking: We provide direct evidence connecting
TFEB nuclear translocation to improved mitochon-
drial function, reduced apoptosis, and decreased
cardiac fibrosis—a mechanistic chain not previously
established for SGLT2i treatment. (4) Clinical
translational relevance: Identifying TFEB as a key
mediator provides a specific therapeutic target
guiding combination therapy development or
novel interventions beyond current SGLT2i
approaches.

Using a diabetic cardiac hypertrophy rat model,
we investigated the molecular actions of EMPA.
Our findings provide new evidence supporting
cardioprotective effects and regulatory pathways.
Specifically, empagliflozin attenuated HFD/STZ-
induced cardiac hypertrophy by reducing oxidative
stress and enhancing antioxidant capacity, aligning
with Wang et al.'s findings [49]. Additionally, we
observed activation of the AMPK—TFEB—autophagy
pathway, which has been reported to play protective
roles in metabolic disorders [50—53]. These results
suggest EMPA confers protective effects against
diabetic cardiomyopathy by modulating redox
homeostasis and autophagy. Furthermore, Marfella
et al. reported elevated SGLT2 protein levels in
diabetic patients compared to non-diabetic patients
[54]. Based on our findings and theirs, EMPA
may confer cardioprotective effects through both
glucose-dependent and -independent mechanisms.
However, the mechanisms by which SGLT2 in-
hibitors regulate redox homeostasis and autophagy
in diabetic hearts require further investigation.

Autophagy is crucial for maintaining physiolog-
ical function but is often impaired in diabetic hearts
[15,16,20,21]. Increasing autophagy activity with
rapamycin attenuates angiotensin II-induced
chronic heart failure [55]. Our study found EMPA
treatment increased autophagic flux activity in
diabetic hearts, evidenced by decreased LC3II and
p62 protein levels, markers of autophagy pathway
activation. EMPA treatment increased phosphory-
lated AMPK levels, which are crucial molecules
regulating autophagy and redox homeostasis in the
pathogenesis of metabolic diseases [50—53]. TFEB
activity is modulated by AMPK phosphorylation
[50,52]. Under physiological conditions, TFEB re-
sides in the cytoplasm; however, conditions such as
starvation, lysosomal dysfunction, or oxidative
stress trigger the nuclear translocation of TFEB,
stimulating the transcription of target genes,
including those related to autophagy and antioxi-
dants [51—-53]. TFEB phosphorylation at 5211 is also
regulated by mTOR signaling [56]. Chen et al.
demonstrated that AMPK activation leads to
RPTOR  phosphorylation, thereby inhibiting

mTORC1 activity and promoting TFEB nuclear
translocation and autophagy activation, which
aligns with our observations [57]. Given the essen-
tial roles of these regulators, targeting the AMPK-
TFEB pathway may have therapeutic value for
managing cardiac hypertrophy-induced metabolic
stress.

Oxidative stress, an imbalance between pro-
oxidants and antioxidants, is dysregulated in
various diseases [58—60]. Numerous studies indi-
cate that dysregulated ROS signaling plays
crucial roles in human disease development [58,60].
Targeting ROS pathways with antioxidants has
therapeutic potential for preventing oxidative
stress-mediated metabolic disorders [58—60]. Our
data suggest EMPA-induced enhancement of anti-
oxidant capacity partly explains its beneficial
cardiac effects. EMPA treatment may confer pro-
tection against oxidative stress, thereby alleviating
the progression of diabetic cardiac hypertrophy by
activating the AMPK-TFEB pathway and stimu-
lating the upregulation of antioxidant proteins.

Apoptosis plays a pivotal role in pathological
cardiac hypertrophy development [38,61]. Previous
research indicates cardiomyocyte apoptosis con-
tributes to cardiac dysfunction and pathological
hypertrophy [38,62]. Our findings suggest EMPA
administration reduced cardiac apoptosis and cas-
pase-3 activity, consistent with observations that
attenuating apoptosis effectively improves cardiac
hypertrophy [37,63]. Zhao et al. highlighted that
under lipopolysaccharide-induced stress, p27 pro-
tein can trigger autophagy, enabling myocardial
cells to evade apoptosis [64]. In our study, EMPA
induced autophagy and suppressed apoptosis in
diabetic rat hearts, consistent with previous studies
on the complex interplay between autophagy and
apoptosis.

Mitochondria are crucial for cardiac function,
supplying over 95% of myocardial ATP [65]. Previ-
ous studies suggest that mitochondrial dysfunction
is implicated in the progression of cardiac hyper-
trophy [46,47]. Diabetes-associated hyperglycemia
contributes to mitochondrial dysfunction by
reducing mean mitochondprial size and count [46,47].
High glucose levels shift mitochondrial energy
production from fatty acid oxidation to alternative
substrates, resulting in reduced ATP production
and ultimately leading to cardiac apoptosis [46,47].
Many studies indicate TFEB-mediated signaling
critically improves mitochondrial function. Kim
et al. demonstrated that TFEB nuclear translocation
enhances mitophagy and mitochondrial biogenesis,
ameliorating inflammatory liver injury [66]. Simi-
larly, Zhu et al. reported that TFEB-mediated



JOURNAL OF FOOD AND DRUG ANALYSIS 2025;33:421—433 431

autophagy attenuates mitochondrial dysfunction
and acute kidney injury [67]. These findings align
with our results, showing that EMPA administration
significantly increases mitochondrial numbers and
ATP production in diabetic hearts, suggesting
improved mitochondrial function that protects car-
diomyocytes from apoptosis. Although numerous
studies indicate that other SGLT2 inhibitors exert
beneficial effects [68,69], Kim et al. demonstrated
that EMPA was associated with a lower risk of car-
diovascular mortality [69].

Despite persistent hyperglycemia in the EMPA-
treated group, markers of oxidative stress and
apoptosis were significantly reduced. We observed
the upregulation of key antioxidant enzymes (HO-
1, SOD1, SOD2, GPx) and a decrease in the
expression of cleaved caspase-3, suggesting direct
cytoprotective effects independent of glycemic
control. Our findings align with studies indicating
that the cardioprotective effects of SGLT2 inhibitors
extend beyond glucose lowering, as evident in non-
diabetic settings [70,71]. Nevertheless, our study
has several limitations. While multiple comple-
mentary techniques consistently implicated AMPK
and TFEB in EMPA-conferred protection against
cardiac hypertrophy and fibrosis, we did not
perform direct functional validation, such as
AMPK or TFEB knockdown and inhibition. This
limitation should be addressed in future studies
to definitively confirm the mechanistic role of
AMPK—TFEB signaling in EMPA-mediated cardiac
protection.

In conclusion, our findings elucidate the regulatory
mechanisms of EMPA, indicating AMPK-TFEB
pathway activation stimulates autophagy- and anti-
oxidant-related proteins, reduces cardiac apoptosis,
and improves mitochondrial function. This mecha-
nism may underlie the protective effects of EMPA on
redox homeostasis deregulation, ultimately miti-
gating cardiac hypertrophy. Our study reveals new
molecular mechanisms underlying the protective
effects of SGLT2 inhibitors against diabetic cardiac
hypertrophy, contributing to a better understanding
of regulatory mechanisms and the identification of
new therapeutic targets.
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