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Abstract

We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker
diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed pro-
inflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic
inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study
the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as
lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after
early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high
HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by
ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g.,
COX-2, ICAM-1 and TNF-a) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation
of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study
showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also
demonstrated the risk of causing insulin resistance.
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1. Introduction

T ype 2 diabetes (T2D) is one of the most esca-
lating global health problem in our modern

society [1,2]. It is generally accepted that chronic
inflammation represents a key pathologic link be-
tween obesity and T2D. Dysfunctional lipid meta-
bolism in hypertrophic adipose tissue gives rise to
increased circulating free fatty acids (FFAs) leading
to hyperlipidemia and lipid peroxidation. These
dyslipidemic events cause an accumulation of
necrotic, apoptotic and autophagic adipocytes [1,3],
followed by an infiltration of pro-inflammatory im-
mune cells [2,3]. The accumulation of free radicals

released by immunocompetent cells, or derived
from conditions of hyperglycemia and dyslipidemia,
are mainly responsible for progression of T2D. In a
vicious cycle, more reactive radicals formed by high
glucose expedite an impairment of the insulin re-
ceptor, causing a further disconnection of the insu-
lin cascade, thus leading to chronic hyperglycemia
and insulin resistance [3,4].
Mainly, two different types of macrophages (M1

and M2) contribute to inflammation in adipose tis-
sue. M1 alternative type macrophages predominate
in lean adipose tissue and have mainly anti-in-
flammatory functions through action of IL-4, IL-10
and IL-13 [1,3]. Hypertrophic adipose tissue derived
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from obese individuals, on the other hand, is mainly
infiltrated with M2 macrophages, visible as crown-
like structures [1,3]. M2 classical macrophages
induce inflammation through secretion of pro-in-
flammatory cytokines and chemokines [3]. The
release of TNF-a, IL-1b, IL-6 and ICAM-1 stimulate
the inflammatory cascade by positive feedback
mechanisms via NFkB and AP-1 signaling to
generate free radicals such as reactive nitrogen
species (RNS) and reactive oxygen species (ROS)
[2e6]. Increased serine phosphorylation of insulin
receptor substrates (i.g., IRS-1 and IRS-2) by JNK
and NFkB signaling, in turn, inhibit the tyrosine
kinase activity of the insulin receptor [2,4,7]. An
impairment of PI-3K/AKT insulin signaling then
causes a decrease of translocation and insertion of
GLUT-4 leading to chronic hyperglycemia [2,4,8].
Ultimately, the formation of advanced glycation end
products (AGE) by reactive carbonyl species (RCS; i.
g., methylglyoxal) and glycated proteins (i.g., A1c)
will lead to cell, tissue and organ damage, subse-
quently causing nephropathy, cardiovascular dis-
ease, retinopathy, neuropathy or different cancers
[1,2,9].
Therapies for diabetes mostly involve control of

hyperglycemia or insulin resistance. Metformin (1,1-
dimethylbiguanide) is usually well-tolerated and
considered to be the first-line antihyperglycemic
drug treatment for T2D by mechanisms of increased
cellular insulin sensitivity and suppression of he-
patic glucose production [10]. Studies focused on
inflammatory pathways in T2D demonstrated ef-
fects of salicylate-derived non-steroidal anti-in-
flammatory drugs (NSAIDs) against hyperglycemia,
hyperinsulinemia, and dyslipidemia in obese mice
as well as in patients with T2D [4,9]. Whereas
ibuprofen (2-(4-isobutylphenyl)propanoic acid) and
aspirin (acetylsalicylic acid) inhibit cyclooxygenase
enzymes (i.g., COX-1 and COX-2), other NSAIDs
such as salicylate and salsalate neither effectively
inhibit the COX enzymes, nor block prostaglandin
synthesis [11e13]. For aspirin and salsalate, an
increased insulin secretion and concomitant
decrease in glucose, A1c, triglycerides, and nones-
terified fatty acids had been observed in T2D studies
[14e17].
Ibuprofen is widely used for treatment of pain,

inflammation and fever [11,12]. Due to its safe and
tolerability profile, it is the only NSAID approved
for use in children over three months old [18].
Ibuprofen is a nonselective inhibitor of COX-1 and
COX-2 [11,12,19] and inhibits NFkB signaling to
decrease the expression of inflammatory genes
[19,20]. Ibuprofen, unanimously with salicylate and
salsalate exerts its anti-inflammatory actions via

attenuation of NFkB signaling via IKKb to decrease
ikB phosphorylation [13,20]. In addition, an inhibi-
tory impact on inflammation by ibuprofen might be
exhibited through pathways of ribosomal S6 kinase
2 and/or activation of PPAR-a and PPAR-g [19]. To
date, there are only few studies on ibuprofen and
diabetes. In 1978, a short-term pilot study of only
four days in normal subjects and patients with
adult-onset diabetes did not affect fasting glycemia,
glucose tolerance, or the insulin response to glucose
[17]. In 1983, a clinical pilot study comprising twelve
weeks using a low dosage of ibuprofen in hyper-
glycemic adults did not reveal major differences in
glucose and insulin [21]. However, a comparison of
over-the-counter analgesic drugs (OTCAD) in mice
fed a high fat diet showed that ibuprofen improved
glucose tolerance [22]. In two earlier studies bene-
ficial effects of ibuprofen on renal and peripheral
nerve function were found [23,24].
Obesity leading to systemic inflammation is well

accepted as a major cause in the development of
T2D. The growing body of evidence pointing to the
benefits of NSAIDs (i.g., salicylate derivatives) in
T2D led us to test the effects of ibuprofen in obese
ZDF rats.

2. Materials and methods

2.1. Animals used

Homozygous obese Zucker diabetic fatty (ZDF)
rats ( fa/fa; strain 185), based on a missense mutation
in the leptin receptor gene [25] and heterozygous
lean control litter mates ( fa/þ; strain 186) were
studied at Charles River Laboratories (CRL). A pool
of six-week-old male ZDF were used. At 10 weeks of
age, fed glucose (via glucometer) was assessed and
twenty-four animals (eight animals for each treat-
ment group) with blood glucose levels �250 mg/dL
were selected along with eight age matched lean
controls. Rats were singly housed on a normal light
cycle in the animal facility and maintained on
Purina 5008 rat chow (LabDiets, changed weekly)
with water ad libitum for the duration of the study.
All protocols were approved by the Institutional
Animal Care and Use Committee (IACUC; No.:
P07012013) and experiments performed at the
Piedmont research center (Morrisville, NC).

2.1.1. Treatment
For experiments, the twenty-four ZDF rats were

randomized and combined with the lean control
group into four different cohorts by A1c levels:
group 1 (Lean control treated with vehicle (0.5%
HPMC þ 0.2% Tween)); group 2 (ZDF control
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treated with vehicle); group 3 (ZDF treated with
metformin (250 mg/kg)); group 4 (ZDF treated with
ibuprofen (100 mg/kg)). Dosages of metformin and
ibuprofen used for our experiments are based on
former studies [26e29] and obtained from Sigma
Aldrich (St. Louis, MO). Oral gavage doses were
formulated weekly, and released from the pharmacy
in daily aliquots for dosing. Animals were gavaged
once daily for 30 days at 10 mL/kg. Rats were
weighted twice a week and food intake was recor-
ded weekly. Body mass index (BMI) was determined
after animals were weighed using animal length (tip
of the nose to the tip of the tail). Fed (at 8 h, prior to
test article dosing) and 5 h fasted (at 13 h) blood
glucose was checked at indicated time points using
a veterinary glucometer (Alpha Trak, Abbott Labo-
ratories, Abbott Park, IL). Rats were sent back to
their home cage after each time point and food was
returned to all animals following the final time
point.

2.1.2. Sampling
On study day 30, whole blood was collected from

tail and A1c measured at 8 h. Animals were then
fasted, dosed per normal and euthanized at 13 h by
CO2 asphyxiation. Blood was withdrawn by cardiac
puncture and 1 mL of whole blood placed into cryo
vials for RNA extraction. Remaining blood was
centrifuged (at 2200�g for 10 min at 22 �C) and
serum (500 mL) pipetted into multi-wells for clinical
chemistry analysis. Liver, epididymal fat, kidney,
heart and spleen were collected and a representa-
tive piece was snap frozen. 100 mg of tissue was
transferred into 1.5 mL cold RNA later tubes and
stored overnight at 4 �C before being moved to
�20 �C. Plasma analysis of glucose and lipid meta-
bolism parameters as well as a comprehensive
metabolic panel was performed at Charles River
Laboratories (CRL) using commercially available
ELISA and colorimetric kits. The homeostatic model
assessment for insulin resistance (HOMA-IR) was
calculated as follows: HOMA-IR (mg/dL) ¼ fasted
insulin (mU/mL) � fasted glucose (mg/dL)/405 by
using the conversion for insulin values as 1 ng/
mL ¼ 24.8 mU/mL.

2.2. Oral glucose tolerance test

On study day 29 an oral glucose tolerance test
(OGTT) was conducted on overnight fasted animals
at CRL. All animals had been dosed per normal daily
routine at 8 h. One hour later animals were gavaged
with glucose at 2 g/kg. Whole blood glucose sam-
pling occurred at the following times (min) relative to
glucose dose: 0, 15, 30, 60, 90 and 120 min and were

determined using a veterinary glucometer (Alpha
Trak, Abbott Laboratories, Abbott Park, IL). Areas
under the serum concentration curve (AUC) of
glucose concentrations were calculated according to
the trapezoidal rule [30]. The reference PG AUC was
calculated as follows: AUC (mg � h/dL) ¼ PG (0
min)þ 2�PG (30min)þ2�PG (60min)þ 2�PG (90
min) þ PG (120 min)/4. For delta AUC, the data were
normalized by subtracting the baseline values of
fasting plasma glucose and calculating the difference
between each time interval, accordingly: delta AUC
(mg � h/dL) ¼ (PG (0 min) - PG (0 min)) þ 2 � (PG
(30 min) - PG (0 min)) þ 2 � (PG (60 min) - PG
(0 min)) þ 2 � (PG (90 min) - PG (0 min)) þ (PG
(120 min) - PG (0 min)/4.

2.3. TaqMan qPCR analysis

For gene expression analysis by TaqMan qPCR,
five inflammatory surrogate genes (COX-2, ICAM-1,
IL-1b, IL-6, and TNF-a) were employed, previously
selected and validated in cell-based, animal and
clinical studies by whole genome Affymetrix and
custom-made Oligo microarrays [6]. RNA was iso-
lated from whole blood samples with Trizol reagent,
followed by chloroform and isopropanol extraction.
Total RNA was precipitated using the RNeasy™
(Qiagen, Chatsworth, CA) for whole blood or
RNeasy™ Lipid Mini Kit for epididymal adipose
tissue, respectively. Total RNA was reverse tran-
scribed using standard protocols and reagents from
Invitrogen, Life Technologies (Grand Island, NY).
TaqMan qPCR was run on a Roche 480 Lightcycler
(Roche Life Science, Indianapolis, IN) for 50 cycles
with concentrations ranging from 0.01 to 100 ng as
standard curve. Gene expression of COX-2
(Rn01483828_m1), ICAM-1 (Rn00564227_m1), IL-1b
(Rn00580432_m1), IL-6 (Rn01410330_m1), TNF-a
(Rn01525859_g1), and GAPDH (Rn01775763_g1)
were analyzed using probes, primers and master
mix from Applied Biosystems (Life Technologies).
Gene expression was expressed as delta ct mean
values ± standard deviation by normalization to
GAPDH and deltaedelta ct values as comparison
with ZDF vehicle controls.

2.4. Statistics

Statistical comparisons of data were performed
using ANOVA analysis utilizing the SAS 9.4 statis-
tical software. Potential outliers within each treat-
ment group (n ¼ eight for each group) were
identified, and outliers and missing values imputed
with the average value of each observed criterion.
Using the F-statistic, the ratio of the mean squared
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model and the mean squared errors from the
Analysis of Variance (ANOVA) was pairwise
compared between each individual group. Results
are expressed as mean values þ standard deviation
for the different treatment groups. Differences
among groups were labeled as *, ** or *** to indi-
cate significant differences from the control group
with p < 0.05, 0.01 and 0.001, respectively. Significant
differences between other groups are provided in
the “Results” section.

3. Results

3.1. Effects of ibuprofen and metformin on body
weight, food intake and BMI

Body weight, BMI and food intake were signifi-
cantly lower in lean control rats compared to the
ZDF control group (Table 1). All treatment groups
showed a decline in body weight between day 26
and day 29 due to the overnight fasting on day 28
(Table 1A). Ibuprofen induced a decline in body
weight with significant effects on day 8 as compared

to ZDF controls (p < 0.05). The decrease in body
weight corresponded to a decline of BMI (Table 1B)
with significant effects on day 8 and 29 (p < 0.05).
The reduction of body weight and BMI in the
ibuprofen group correlated with a significant lower
food intake (Table 1C) at day 8 and 15 (p < 0.001) as
well as at day 22 and 28 (p < 0.01). Chronic treatment
with metformin did not cause any significant
changes in body weight and BMI. However, a sig-
nificant lower food intake in the metformin group
was noted at day 28 as compared to ZDF controls
(p < 0.01).

3.2. Effects of ibuprofen and metformin on glucose
homeostasis

In the next set of experiments, we analyzed the
effects of ibuprofen and metformin on glucose
metabolism parameters. Fig. 1A shows a decline of
blood glucose levels to around 250 mg/dL on day 29
in all treatment groups due to overnight fasting on
day 28. In metformin treated ZDF rats a significant
decrease in fasted blood glucose levels was

Table 1. Effects of ibuprofen and metformin on weight and food intake. The effects of chronic treatment by ibuprofen (ZDF þ IBU), metformin
(ZDF þ MET) were compared with the ZDF vehicle control group (ZDF) and lean controls (LEAN). Results are expressed as mean values þ standard
deviation (SD) for the different treatment groups (n ¼ 8 for each group). (A) Effects on body weight were analyzed on day 1, 4, 8, 11, 15, 19, 22, 26
and 29 and expressed as means and SD in grams. (B) Body mass index (BMI) was calculated at indicated times by ratio of weight and square of length
and expressed as means and SD. (C) Effects on food intake are expressed at indicated times as means and SD in grams. *, **, and *** indicate
significant differences from the ZDF vehicle control group with p < 0.05, 0.01 or 0.001, respectively, as analyzed by ANOVA analysis.

Treatment Day 1 4 8 11 15 19 22 26 28 29

(A) Body Weight
LEAN_MEAN 288.8*** 295.3*** 307.5*** 313.3*** 315.1*** 322.8*** 331.4*** 337.5*** 325.5***
LEAN_SD 15.0 14.6 16.8 17.0 16.2 16.1 18.2 19.0 16.5
ZDF_MEAN 388.6 384.0 400.1 400.5 392.3 399.4 402.9 408.4 377.5
ZDF_SD 19.5 25.5 22.7 23.3 27.2 23.3 26.1 25.1 28.4
ZDF þ MET_MEAN 376.6 377.8 388.5 396.1 390.9 400.8 399.9 405.6 378.9
ZDF þ MET_SD 20.1 23.7 21.4 24.8 27.5 26.7 29.1 28.8 28.6
ZDF þ IBU_MEAN 386.5 370.8 376.4* 379.4 377.9 376.3 393.3 380.6 359.0
ZDF þ IBU_SD 15.8 15.3 16.6 17.0 20.3 28.7 23.4 27.3 26.8
(B) BMI
LEAN_MEAN 1.95*** 2.09*** 2.00*** 2.09*** 1.94***
LEAN_SD 0.08 0.11 0.10 0.12 0.10
ZDF_MEAN 2.63 2.61 2.41 2.53 2.35
ZDF_SD 0.07 0.08 0.12 0.14 0.13
ZDF þ MET_MEAN 2.57 2.59 2.49 2.54 2.39
ZDF þ MET_SD 0.07 0.15 0.08 0.09 0.08
ZDF þ IBU_MEAN 2.68 2.50* 2.45 2.48 2.21*
ZDF þ IBU_SD 0.10 0.09 0.13 0.14 0.18
(C) Food Intake
LEAN_MEAN 169.1*** 173.5*** 145.9*** 146.3***
LEAN_SD 11.7 46.6 6.3 16.4
ZDF_MEAN 271.9 292.4 305.6 289.4
ZDF_SD 18.5 19.7 21.9 10.4
ZDF þ MET_MEAN 255.1 309.9 303.9 269.7**
ZDF þ MET_SD 23.2 31.8 17.0 28.5
ZDF þ IBU_MEAN 227.3*** 258.2*** 233.5** 239.3**
ZDF þ IBU_SD 40.2 33.7 49.7 45.5

*, **, and *** indicate significant differences from the ZDF vehicle control group with p < 0.05, 0.01 or 0.001, respectively.
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observed starting from day 8. Also ibuprofen treat-
ment did reduce fasting blood glucose levels, how-
ever, in a non-significant manner. For fed glucose
(Fig. 1B), increasingly significant higher levels were
observed in the metformin group starting from day
15 to day 28. Also ibuprofen treatment induced a
significant elevation of fed glucose but earlier as
starting on day 8 with lesser effects on day 28. The
oral glucose tolerance test (OGTT) showed strong
antihyperglycemic effects of metformin starting
with a significant decline of glucose after 15 min
(p < 0.01) with a high significance up to the end of
the testing (Fig. 1C). Ibuprofen also caused a sig-
nificant decrease in blood glucose 15 min and

30 min (p < 0.01) after the glucose challenge, but to a
lesser degree as compared to metformin. The big
difference between lean controls and ZDF rats is
apparent via calculation of AUC (Fig. 1D) or delta
AUC values (Fig. 1E) indexing the glucose excur-
sion. Moreover, the strong effects of metformin on
glucose clearance are reflected by the significant
decline (p < 0.001) of AUC (Fig. 1D) and delta AUC
(Fig. 1E). Also ibuprofen induced lesser AUC and
delta AUC values, although in a non-significant
manner.
The analysis of glycated hemoglobin (A1c)

showed significant lower levels of A1c in lean con-
trols on day 1 and day 30 as compared to ZDF

Fig. 1. Effects of ibuprofen and metformin on glucose homeostasis. The effects of chronic treatment by ibuprofen (IBU; dark blue square or
columns) and metformin (MET; bright blue triangle or columns) were compared with the ZDF vehicle control group (CONT; black square or columns)
and lean controls (LEAN; light blue rhombus or columns). (A) Animals were fasted for 5 h and blood glucose levels were analyzed on day 1, 8, 15, 22
and 29 and expressed as mg/dL. (B) Normal fed blood glucose levels were analyzed and expressed as mg/dL. (C) On day 29 oral glucose tolerance test
(OGGT) was performed. All groups were treated with glucose (2 g/kg). After 15, 30, 60, 90 and 120 min blood glucose levels were determined as mg/
dL. (D) Areas under the serum concentration curve (AUC) of OGTT glucose concentrations are expressed as AUC (mg/dL). (E) Delta AUC values were
calculated by subtracting the baseline values of fasting plasma glucose and expressed as Delta AUC (mg/dL).
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vehicle control animals (Fig. 2A). Significantly,
ibuprofen attenuated the glycation of hemoglobin
following 30 days after treatment (p < 0.001). In
contrast, metformin did not significantly affect A1c
levels after 30 days. Analysis of plasma insulin levels
on day 30 of the study revealed significant lower
levels of insulin in lean controls as compared to ZDF
rat treatment groups (Fig. 2B). Ibuprofen treated
ZDF rats showed significantly higher levels of in-
sulin release (3.11 ng/mL; p < 0.001) as compared to
metformin (1.54 ng/mL; p < 0.01). Fig. 2C shows the

HOMA-IR reflecting the relationship between basal
insulin release and glucose concentration, thus
widely used as an indicator for insulin resistance. As
expected, lean controls show a significant lower
HOMA-IR as compared to ZDF vehicle rats. Treat-
ment with metformin reveals a higher HOMA-IR as
compared to vehicle controls but in a non-signifi-
cant manner. As expected by the high levels of in-
sulin, the HOMA-IR induced by ibuprofen was
significant higher as compared to the ZDF vehicle
group (p < 0.001).

3.3. Effects of ibuprofen and metformin on fat
metabolism

We then analyzed potential effects of ibuprofen
and metformin on various lipid metabolism pa-
rameters. After 30 days, significantly (p < 0.001)
higher adiponectin levels were determined in
plasma derived from the lean control group
(11.6 mg/mL) as compared to ZDF controls (6.9 mg/
mL), but not in metformin or ibuprofen treated
animals (Fig. 3A). There was a significant reduction
(p < 0.001) of levels of triglycerides (TGs) in lean
control animals (around 70 mg/dL) when compared
to ZDF controls (434 mg/dL). This contrasts the ef-
fects of metformin or ibuprofen where we did not
observe significant differences as compared to the
vehicle group (Fig. 3B). Free fatty acids (FFA) were
reduced in plasma derived from lean control rats
(p < 0.001) as compared to the ZDF rats (Fig. 3C).
Significantly, ibuprofen reduced FFAs to levels of
lean control animals (p < 0.01). On the other hand,
metformin did not induce significant changes of
FFA concentrations. A significant reduction of fast-
ing cholesterol, HDL-C and LDL-C (p < 0.001) was
observed in the lean control group versus ZDF
controls (Fig. 3DeF). Also ibuprofen induced a
strong decline in cholesterol and HDL-C (p < 0.001)
almost to levels of lean controls, whereas no sig-
nificant changes were observed for LDL-C. In the
metformin group no significant differences of
cholesterol, HDL-C and LDL-C were noticed.

3.4. Effects of ibuprofen and metformin on
inflammatory mediators in adipose tissue and
whole blood

Next, we analyzed the expression of key media-
tors in the inflammatory cascade in blood and
epididymal adipose tissue. A panel of three anti-
inflammatory cytokines in whole blood was quan-
tified by ELISA analysis as a measure for systemic
inflammation (Fig. 4AeC). IL-4 was significantly
increased in lean controls (p < 0.001) and ZDF rats

Fig. 2. Effects of ibuprofen and metformin on A1c, insulin and
HOMA-IR. (A) Levels of glycated hemoglobin (A1c) were analyzed on
day 1 and 30 and expressed as national glycohemoglobin standardi-
zation program (NGSP) in % A1C. (B) Insulin levels in plasma were
analyzed on day 30 and expressed as ng/mL. (C) HOMA-IR was
calculated as described in materials and methods and expressed as
HOMA-IR (mg/dL). Mean values þ standard deviation for the different
treatment groups. *, **, and *** indicate significant differences from the
ZDF vehicle control group with p < 0.05, 0.01 or 0.001, respectively, as
analyzed by ANOVA analysis.
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treated with ibuprofen (p < 0.001) as compared to
ZDF controls (Fig. 4A). IL-4 did increase also in
response to metformin, but to a lesser degree
(p < 0.05). On the other hand, no significant changes
in IL-10 plasma levels were observed in lean con-
trols, metformin and ibuprofen treated ZDF rats
(Fig. 4B). For IL-13 (Fig. 4C), a slight increase was
demonstrated for metformin and lean controls to a
higher degree although in a non-significant manner,
whereas the increase of IL-13 by ibuprofen was
significant (p < 0.05).
In the next set of experiments we quantified the

expression of a subset of inflammatory genes in
whole blood (Fig. 5A) and epididymal fat tissue

(Fig. 5B): cyclooxygenase-2 (COX-2), intracellular
adhesion molecule-1 (ICAM-1), interleukin-1b (IL-
1b), interleukin-6 (IL-6) and tumor necrosis factor-a
(TNF-a) by TaqMan qPCR analysis. Gene expres-
sion levels were normalized to GAPDH (Delta ct
values ± SD indicated as “I”) or related to ZDF
controls (Delta delta ct values indicated as “II”) as
described in “Materials and methods” under section
2.3. The expression of COX-2 in blood derived from
lean controls and metformin group was similar to
that of ZDF vehicle controls (Fig. 5A; I). In contrast,
ibuprofen treatment induced a significant down-
regulation of COX-2 (p < 0.001), as demonstrated by
higher delta (I) as well as delta delta ct values (II).

Fig. 3. Effects of ibuprofen and metformin on lipid metabolism. The effects of chronic treatment by ibuprofen (IBU; dark blue columns) and
metformin (MET; bright blue columns) were compared with the ZDF vehicle control group (CONT; black columns) and lean controls (LEAN; light
blue columns) after 30 days. (A) Levels of adiponectin were analyzed and expressed as ug/mL. (B) Levels of triglycerides were analyzed and expressed
as mg/dL. (C) Levels of free fatty acids (FFA) were analyzed and expressed as mg/dL. (D) Levels of cholesterol were analyzed and expressed as mg/dL.
(E) Levels of low density lipoproteins (LDL-C) were analyzed and expressed as mg/dL. (F) Levels of high density lipoproteins (HDL-C) were analyzed
and expressed as mg/dL. Mean values þ standard deviation for the different treatment groups. *, **, and *** indicate significant differences from the
ZDF vehicle control group with p < 0.05, 0.01 or 0.001, respectively, as analyzed by ANOVA analysis.
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Similarly, there were no major differences for
ICAM-1 in lean controls and metformin treated
animals versus ZDF controls. However, ZDF rats
treated with ibuprofen showed a drastic down-
regulation of ICAM-1 (p < 0.001). For IL-1b no major
differences were observed throughout the different
groups. Also for IL-6 no significant differences were
noticed in metformin or ibuprofen treated animals,
whereas in lean controls an upregulation was
observed (p < 0.05). Finally, metformin did not

induce major changes in TNF-a expression. In lean
control animals, we observed a significant down-
regulation of TNF-a (p < 0.05) but to a lesser degree
as compared to the prominent decrease in the
ibuprofen group (p < 0.001). The selected inflam-
matory genes (i.g., COX-2, ICAM-1, IL-1b, IL-6 and
TNF-a) were also analyzed in epididymal fat tissue
(Fig. 5B). Similar to whole blood analysis COX-2
expression was significantly down-regulated in
ibuprofen treated animals (p < 0.01) but not in fat
tissue of the metformin group. Interestingly, COX-2
expression was upregulated in lean controls
(p < 0.05). For ICAM-1, ibuprofen induced a
downregulation in epididymal fat tissue although in
a non-significant manner, whereas the expression
levels in the other groups were very similar. As
already observed in whole blood (A), also in
epididymal fat tissue no major differences
throughout the treatment groups were observed for
IL-1b expression (B). The regulation of IL-6 was
different in fat tissue as compared to blood (Fig. 5A).
Ibuprofen treatment significantly upregulated IL-6
(p < 0.05) in contrast to the other groups (Fig. 5B). As
observed for whole blood, TNF-a was down-regu-
lated in lean control animals as compared to ZDF
controls (p < 0.05). On the other hand, ibuprofen
treatment also induced a down-regulation of TNF-a
expression in epididymal fat but in a non-significant
manner.

4. Discussion

We investigated the effects of ibuprofen on the
inflammatory response in obesity and T2D patho-
genesis using the ZDF rat model to authenticate
obesity as a leading cause for T2D and damaging
effects on various organs [1,2,9]. As expected, we
observed strong anti-inflammatory effects of
ibuprofen as demonstrated by inhibition of cyto-
kines (i.g., COX-2, ICAM-1 and TNF-a) as measured
in whole blood and epididymal adipose tissue and
systemic upregulation of anti-inflammatory cyto-
kines (i.g., IL-4 and IL-13). Particularly, the effects of
a down-regulation of COX-2 but also the modulatory
effects of IL-6 suggest a major role in attenuation of
NFkB signaling by ibuprofen [1,5,20]. In addition,
NFkB might be also involved in dyslipidemic con-
ditions leading to insulin resistance [31]. A promi-
nent downregulation of COX-2 by ibuprofen was
observed earlier in the streptozotocin-induced type 1
diabetes model [32]. These results are consistent
with clinical studies showing the proinflammatory
role of COX-2 leading to pathological conditions in
type 2 diabetes [33,34]. Interestingly, we observed an
upregulation of IL-6 in whole blood of lean controls

Fig. 4. Effects of ibuprofen and metformin on anti-inflammatory
cytokines. The effects of chronic treatment by ibuprofen (IBU; dark blue
columns) and metformin (MET; bright blue columns) were compared
with the ZDF vehicle control group (CONT; black columns) and lean
controls (LEAN; light blue columns) after 30 days. Levels of anti-in-
flammatory cytokines in whole blood such as interleukin-4 (IL-4; A),
interleukin-10 (IL-10; B) and interleukin-13 (IL-13; C) were measured
by ELISA analysis and expressed as pg/mL. Mean values þ standard
deviation for the different treatment groups. *, **, and *** indicate
significant differences from the ZDF vehicle control group with
p < 0.05, 0.01 or 0.001, respectively, as analyzed by ANOVA analysis.

234 JOURNAL OF FOOD AND DRUG ANALYSIS 2024;32:227e238

O
R
IG

IN
A
L
A
R
T
IC

L
E



and by ibuprofen in epididymal tissue suggesting an
anti-inflammatory role of IL-6 in the ZDF model.
This is in line with an earlier study showing only
marginal IL-6 levels in ZDF rats [35]. Recently, the
molecular pathways leading to pleiotropic effects of
IL-6 are better understood. Pro-inflammatory activ-
ities of IL-6 appear to be mediated via trans-signaling
by binding to a soluble IL-6 receptor which conse-
quently mediates action in all cells that express
gp130. On the other hand, anti-inflammatory activ-
ities of IL-6 are mainly triggered by the classic
signaling pathway through binding to the mem-
brane-bound two-subunit receptor complex (i.g.,
IL-6R and gp130 [36,37]. The versatility of these
pathways leading to differential activation of intra-
cellular pathways may explain controversial reports
on the role of IL-6 signaling in obesity-related in-
sulin resistance [1,4] and the pro-inflammatory role
of IL-6 in studies showing elevated levels in blood of
obese patients with T2D [38,39].
The effects of ibuprofen against hyperglycemia/

glucose intolerance in our study appear to be

ambivalent. Ibuprofen caused a significant decrease
in blood glucose 15 min and 30 min after the glucose
challenge which resulted only in a non-significant
decline of AUC values. Noteworthy, ibuprofen
induced a higher insulin release as compared to the
metformin group translating into a high HOMA-IR
indicative of insulin resistance. Only limited studies
are available on the analysis of ibuprofen on insulin
release. Earlier an increase of insulin was observed
in humans but on the mechanism leading to
hyperinsulinemia via inhibition of ATP-sensitive
potassium channels can only speculated [40,41].
Interestingly, some studies indicate that insulin may
exert an anti-inflammatory response, independent
of its effects on glycemia by mechanisms of NO
release, and inhibition of NFkB signaling thus
decreasing ICAM-1 and MCP-1 expression [42,43].
This is in correspondence to our observation of a
downregulation of ICAM-1 by ibuprofen in our
study. However, the glucose clearance effects of
ibuprofen were lesser as compared to metformin
and indicated by a high HOMA-IR. Surely,

Fig. 5. Effects of ibuprofen and metformin on inflammatory mediators. The effects of chronic treatment by ibuprofen (IBU; dark blue columns)
and metformin (MET; bright blue columns) were compared with the ZDF vehicle control group (CONT; black columns) and lean controls (LEAN;
light blue columns) after 30 days. Expression of inflammatory genes in whole blood (A) or epididymal adipose tissue (B) such as COX-2, ICAM-1, IL-
1b, IL-6 and TNF-a was analyzed by TaqMan qPCR and expressed either according to the delta CT method (I) using GAPDH as internal control or
the deltaedelta CT method (II) compared to ZDF vehicle controls as described in “Materials and methods”. Mean values þ standard deviation for the
different treatment groups. *, **, and *** indicate significant differences from the ZDF vehicle control group with p < 0.05, 0.01 or 0.001, respectively,
as analyzed by ANOVA analysis.
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undesirable effects of ibuprofen leading to hyper-
insulinemia and insulin resistance or other adverse
effects caused by long-term medication need to be
avoided as outlined below. On the other hand,
ibuprofen significantly lowered A1c, suggesting an
inhibitory impact on RCS formation thus to atten-
uate the vicious cycle of free radical formation in the
inflammatory cascade. On the contrary, in a type 1
diabetes rodent model for encephalopathy, no ef-
fects of ibuprofen on hyperglycemia were observed
[32]. Our analysis of lipid parameters demonstrated
that ibuprofen induced a strong decline in free fatty
acids, cholesterol and HDL-C almost to levels of
lean controls. That correlates to an earlier animal
study where ibuprofen showed a reduction in total
cholesterol and triglycerides [44]. Unlike our study,
they also observed a decline in LDL-C. The signifi-
cant decline in free fatty acids in our study corre-
lated with high insulin levels reported to play a role
in the reesterification process of FFAs in adipose
cells, thus promoting TG storage leading to their
decrease in plasma [45]. Another study analyzing
the effects of ibuprofen against atherosclerosis in
smokers and non-smokers also demonstrated a
decline in triglycerides but in contrast to our study,
an increase of HDL-C levels [46]. More T2D studies
are warranted to consolidate the effects of ibuprofen
in context of lipid metabolism but our observation of
the marked decline of HDL-C might be due to an
interaction between ibuprofen and lipoproteins [47].
Anti-inflammatory effects of ibuprofen include
pleiotropic pathways via inhibition of adhesion and
migration of leukocytes, suppressing intracellular
production of reactive oxygen species and oxidative
modification of LDL-C [48]. Other pathways exerted
by ibuprofen might include an inhibitory role in the
Wnt/b-catenin pathway via increased phosphoryla-
tion and degradation of b-catenin [49].
As expected, metformin as widely used T2D drug

significantly decreased fasted blood glucose levels
and improved glucose tolerance in our ZDF rat
model. Previous studies suggest anti-inflammatory
effects by metformin as indicated by a decline in
IL-1b, COX-2, and iNOS as well as increase in IL-10,
respectively [50,51]. However, possible anti-inflam-
matory effects of metformin have not been
confirmed in clinical studies [52,53]. In our study,
levels of COX-2, ICAM-1, IL-1b, IL-6 or TNF-a were
not significantly affected by metformin in epidid-
ymal adipose tissue as well as whole blood. Sur-
prisingly, we did not observe any effect of
metformin on A1c which might be based on the
short-term duration of thirty days in our study. The
results of positive effects of ibuprofen in the obese
rat ZDF model against diabetic complications such

as inflammation and dyslipidemia as well as the
ambivalent results on hyperglycemia with a poten-
tial risk on insulin resistance will have to be
consolidated. Well-designed and more predictable
long-term randomized double-blind and placebo-
controlled clinical studies are required to further
assess potential short-term therapeutic applications
of ibuprofen against T2D but also potential adverse
reactions for clinical efficacy.
It is well documented that a more favorable gly-

cemic, lipidemic as well as inflammatory profile in a
normal weight population have a positive impact on
human health. These relationships are evident in
studies showing that caloric restriction can induce
an extension of life span in mammals [54]. In context
of relationship between obesity and chronic
inflammation, interestingly, we observed a less
intake of food in the ibuprofen group leading to a
weight reduction as compared to ZDF vehicle con-
trols and we can only speculate on the taste. How-
ever, our comprehensive metabolic panel did not
show any major changes indicating that ibuprofen
treatment was well tolerated as judged by organ-
specific biomarkers in blood (data not shown). The
weight reduction by ibuprofen corresponds to an
earlier study demonstrated in mice fed with high fat
diet [22]. On the other hand, no effects of ibuprofen
on body weight were observed in a type 1 diabetes
rodent model for encephalopathy [32]. Ibuprofen
has a comparatively low risk of adverse effects as the
only NSAID approved for use in children over three
months old with a fairly safe and tolerability profile
[12,18]. However, a long-term usage of ibuprofen
particularly for high-risk patients should be avoi-
ded. Although low, incidences of cardiovascular,
gastrointestinal and renal toxicity were observed at
higher dosages or long-term application of
ibuprofen [11,55]. Noteworthy, reports on hepato-
toxicity with ibuprofen use are rare, probably
because of its short plasma half-life and its lack of a
pathologic metabolite [56]. Ultimately, to avoid or
reduce T2D symptoms, obese patients should aim
for a better weight management to escape the vi-
cious cycle of systemic chronic inflammation
without the need for medication thus reducing the
potential for side effects and compensatory re-
actions requiring secondary treatment.

5. Conclusion

We tested the effects of ibuprofen against T2D by
the use of the ZDF rat model. Ibuprofen showed
positive effects against diabetic complications such
as inflammation and dyslipidemia. Anti-inflamma-
tory effects are indicated by an inhibition of
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cytokine/chemokine signaling and/or upregulation
of anti-inflammatory cytokines whereas lowered
levels of cholesterol and free fatty acids in the
ibuprofen treatment group demonstrated anti-
hyperlipidemic effects. The results on hyperglyce-
mia were ambivalent. Although ibuprofen
decreased A1c, the high release of insulin translated
into a high HOMA-IR raising concerns for the risk
of insulin resistance. Carefully designed human
trials should be conducted to further assess poten-
tial therapeutic applications of ibuprofen against
T2D. Ultimately, T2D patients should aim for a
better weight management and life style to escape
the vicious cycle of systemic chronic inflammation
leading to T2D.
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