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Abstract

We demonstrated a sensitive electrochemical method for the determination of nonelectroactive melamine (Mel) using
a modified glassy carbon electrode (GCE), with uric acid (UA) as the signal reporter. To increase the anodic response of
UA, GCE was coated with AueAg nanoparticles and a Nafion thin film (AueAg/Nafion/GCE). The sensing mechanism
was based on the competitive adsorption behavior of Mel on the AueAg/Nafion/GCE, which reduces the electroactive
surface area of nanoparticles and thus hinders anodic response of UA. Under optimal conditions and the use of an
analytical method of differential pulse voltammetry, this modified electrode detected Mel concentrations ranging from
2.5 to 70 nM, with a detection limit of 1.8 nM. The AueAg/Nafion/GCE demonstrated satisfactory reproducibility and
stability, with relative standard deviations (RSDs) of 9.3% and 7.1%, respectively. The proposed electrochemical method
was then successfully used to determine the Mel content in spiked milk powder and cat food samples, with RSDs of
1.7%e9.3% and recoveries of 92.4%e103.7%.
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1. Introduction

A dulteration of milk powder with melamine
(Mel) has caused infant fatality and hospi-

talization and was a critical food safety concern in
2008 [1]. Melamine powder has a similar
appearance to that of milk powder and possesses
a high nitrogen content (66% nitrogen by mass),
similar to that of proteins. Therefore, Mel is
intentionally adulterated to milk products by
unethical manufacturers to falsely increase pro-
tein concentration. Consumption of Mel-contam-
inated milk products causes urinary system
damage, kidney stones, and death because of the
formation of insoluble high molecular weight
Mel-complexes in renal tubules [1]. Accordingly,
the US Food and Drug Administration (FDA) set

the maximum level of Mel in food products at 20.0
mM (2.5 ppm) to ensure food safety. Several
instrumental methods have been developed for
the detection and estimation of Mel, such as
colorimetric assay, enzyme-linked immunosor-
bent assay, fluorescence spectroscopy, surface-
enhanced Raman spectroscopy, capillary
electrophoresisemass spectrometry, and liquid
chromatographyemass spectrometry [2e9].
Although these methods produce accurate and
precise results, they are expensive to employ,
time consuming, and require tedious sample
preparation [10e21]. Furthermore, they cannot be
employed for rapid on-site analysis [22].
Electrochemical methods offer numerous advan-

tages because of their inexpensive, simplicity, and
high detecting performance compared with existing
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methods [23]. Unfortunately, Mel is poor electro-
active and highly stable; thus, few studies have per-
formed direct electroanalysis of Mel. Several indirect
electrochemicalmethodswere developed to improve
the electroactivity of Mel. For example, Li et al.
described an electrochemical DNA-based sensor for
real-time measurement of Mel in flowing milk [24].
The DNA sensors are based on thiol-anchored DNA
sequences, comprising two polythymine segments
connected by a four-cytosine loop with a redox re-
porter. The sensor responds to changes in melamine
concentration within seconds without contaminating
the product stream by using melamine-induced
DNA triplex formation to generate an electro-
chemical output. Liu et al. developed a sensitive ho-
mogeneous electroanalytical platform for Mel
detection, which relies on the formation of a triplex
molecular beacon integrated with exonuclease
IIIemediated signal amplification [25]. This sensing
platform uses the high binding affinity of the DNA
triplex structure with Mel and the unique features of
exonuclease III for sensitive and selective Mel assay,
with a limit of detection (LOD) as low as 8.7 nM.
Although DNA-modified electrochemical sensors
are sensitive and save time, the design of DNA se-
quences and their chemical modification with redox
reporters and immobilization processes are complex
and expensive. Regasa et al. proposed a family of
molecularly imprinted copolymer thin films, such as
polyaniline, poly(aniline-co-itaconic acid), and pol-
y(aniline co-acrylic acid), deposited on a glassy car-
bon electrode (GCE) using an in situ
electropolymerization method with Mel as a tem-
plate [26e28]. The electron conductivity of polyani-
line films increased with increasing Mel
concentrations in the sample solution from the elec-
troactivity of Mel. Furthermore, the delocalization of
charges formed acceptor-type sites and caused an
increase in [Fe(CN)6]

3�/4� electron transfer rates as
the quantity of Mel increased. After the rebinding of
Mel, the proposed sensors provided excellent LODs
(0.4 nMe17.9 pM) with high selectivity. However, the
preparation of these polyaniline-based conductive
films is lab intensive and time consuming.
Metal- and nonmetal-nanocompositeemodified

GCEs have been used for Mel detection because their
unique electronic and catalytic properties are ideal for
signal generation and transduction in sensing [29]. For
example, Daizy et al. proposed the electrochemical
detection of Mel by using a reduced graphene oxide-
copper nanoflowermodifiedGCE [30]. Under optimal
conditions, the proposed method can detect Mel
concentrations ranging from 10 to 90 nM with a LOD
of 5.0 nM. Peng et al. suggested the sensitive electro-
chemical detection ofMel by using gold nanoparticles

(Au NPs) deposited on a graphene-doped carbon
paste electrode [31]. The sensing mechanism is based
on the interaction betweenmelamine and theAuNPs,
causing suppression of the peak current. The pro-
posed method exhibited a satisfactory linear rela-
tionship in the concentration range of 0.2e800 nM,
with a LOD of 0.18 pM. Furthermore, Ren proposed a
competitive immunosensor based on poly-
ethyleneimine functionalized reducedgrapheneoxide
and a Au NPemodified electrode for the detection of
Mel [32]. Mel was determined using differential pulse
voltammetry (DPV) in a buffer solution containing
[Fe(CN)6]

3�/4�. This Mel immunosensor exhibited a
linear relationship in the concentration range of 1 pM
to 1 mM, with a LOD of 0.27 pM. Although metal- and
nonmetal-nanocompositeemodified electrochemical
sensors provide superior sensitivity, the fabrication of
a nanocomposite-modified electrode is complicated.
Therefore, developing a simple and convenient
fabrication procedure for nanocomposite-modified
electrodes with high selectivity and sensitivity is
crucial.
In this study, we propose a simple procedure to

fabricate modified GCE and detect Mel by using an
indirect electrochemical method. A GCE was coated
sequentially with a drop of AueAg NP solution,
which was synthesized in HEPES buffer at room
temperature. A Nafion thin film was then used to
secure the AueAg NPs on the electrode surface. The
Nafion film was used to coat the modified GCE sur-
face because of its unique ionic conductivity and
excellent thermal and mechanical stability. For
simplicity, this sensing electrode is denoted as
AueAg/Nafion/GCE. Through hydrophobic inter-
action, Mel preferentially adsorbs onto AueAg NPs,
blocking the electroactive surface to the adsorption of
the signal reporter (i.e., uric acid [UA]) in the standard
solution and thus suppressing the anodic current
from UA. On the basis of this mechanism, we con-
structed an electrochemical method for the detection
ofMel usingAueAg/Nafion/GCEwithUAas a signal
reporter for milk powder and animal food analysis.

2. Experiment

2.1. Chemicals

All chemicals were purchased from
SigmaeAldrich (Milwaukee, WI, USA). All the re-
agents were commercially available and of analyt-
ical reagent grade, including HAuCl4, AgNO3, KCl,
NaCl, CaCl2, MgCl2, NaH2PO4, Na2HPO4, Na3PO4,
HEPES, UA, Mel, Ru(NH3)6

2þ, Nafion, ammonia,
phenylamine, glucose, sucrose, lactose, fructose,
glycine, adenine, and thymine. NaH2PO4, Na2HPO4,
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and Na3PO4 were used to prepare phosphate buffer
(PB) solutions at different pH values to use as the
electrolyte solutions. Ultrapure water (18.2 MU cm)
from a Milli-Q ultrapure system (Millipore, MA,
USA) was used.

2.2. Preparation of AueAg NPs

AueAg NPs were synthesized by mixing 10 mL of
0.4 mM AgNO3 and 90 mL of 0.4 mM HAuCl4 in 100
mL of 200 mM HEPES solution at room temperature.
The mixed solution was pipetted five times by using
a 100 mL micropipette and left to grow in the dark.
After 24-hr incubation, the color of the solution had
changed from light yellow to red, indicating the
formation of AueAg NPs. The prepared AueAg
NPs were washed three times following centrifu-
gation-washing procedures (8000 rpm, 10 min) with
ultrapure water. The concentration of the prepared
AueAg NPs was defined as 1 � .

2.3. Fabrication of a AueAg/Nafion-modified GCE

The base of the GCE (4 mm in diameter) was
polished successively with 1 and 0.05 mm alumina
slurry before modification. After each round of
polishing, it was rinsed with ultrapure water, soni-
cated in ethanol for 5 min, and then sonicated in
ultrapure water for 5 min. Finally, after it was dried
under nitrogen flow, it was ready for use.
A 5-mL drop of 1 � AueAg NP solution was added

to the GCE surface, which was then dried in a vac-
uum dryer at room temperature. A polymer with
ionic conductivity, Nafion (0.5%, 2 mL), was coated
on the modified GCE surface to secure AueAg NPs
on the GCE. The AueAg/Nafion/GCE sensor was
fabricated in 10 min using premade AueAg and
Nafion solutions.

2.4. Characterization of AueAg NPs

A JEOL 2010 transmission electron microscope
(TEM, JEOL, Tokyo, Japan) with an acceleration
voltage of 200 kV was used to study the morphol-
ogies of the prepared AueAg NPs in the absence
and presence of UA and Mel. An Evolution 200
UVeVis spectrometer (ThermoFisher, NY, USA)
was used to record the UVeVis spectra of the pre-
pared AueAg NP solutions in the absence and
presence of UA and Mel. A dynamic light scattering
spectrophotometer (DLS, ELSZ-2000ZS, Otsuka
Electronics Co., Ltd., Osaka city, Japan) was used to
measure the hydrodynamic diameter and zeta

potential of the prepared AueAg NPs in the absence
and presence of UA and Mel.

2.5. Electrochemical apparatus

Cyclic voltammetry (CV) and DPV experiments
were performed at the CHI 600 electrochemical
workstation (CH Instruments, Austin, TX, USA). A
conventional three-electrode system was used,
consisting of a AueAg/Nafion/GCE working elec-
trode, a platinum wire auxiliary electrode, and a Ag/
AgCl reference electrode. All experiments were
performed at 25 ± 1 �C. DPV experiments were
performed at a scan rate of 20 mV/s with a 50-mV
pulse amplitude, 50-ms pulse width, and 250-ms
pulse period.

2.6. Pre-treatment of milk powder and cat food
sample

0.2 g milk powder and cat food purchased from
local supermarket were mixed with 25 mL methanol
solution containing 0.01 M trichloroacetic acid. After
20 min stirring, the solution was purified through
centrifugation at 12,000 rpm for 10 min, and the
supernatant was filtered. Then, the filtrate was
condensed to get a total volume of 5 mL and filtered
using a 0.2�mm filter membrane.

3. Results and discussion

3.1. Sensing scheme

The effects of analytes on AueAg NPs were
initially investigated in the solution phase. Fig. 1A
summarizes the study of analyteenanoparticle
interaction from the UVeVis spectrum of the pre-
pared AueAg NPs in the absence and presence of
analyte solutions. As the black curve in Fig. 1A il-
lustrates, the prepared AueAg NPs exhibited a
surface plasmon resonance (SPR) absorption peak at
520 nm. The TEM image in Fig. 1B reveals that the
diameter of the prepared AueAg NPs was 20.1 ± 2.7
nm. The prepared AueAg NPs were stable without
coagulation for at least 1 month when stored at
room temperature in the dark, as verified by both
TEM and UVeVis measurements after storage. The
findings further demonstrated that the SPR bands of
the prepared AueAg NPs for three different batches
of AueAg NPs were reproducible (relative standard
deviation [RSD] < 2.13%) for sensor development.
Following a reported colorimetric assay for Mel
detection based on the hydrophobic interaction of

JOURNAL OF FOOD AND DRUG ANALYSIS 2020;28:475e485 477

O
R
IG

IN
A
L
A
R
T
IC

L
E



Fig. 1. (A) UVeVis spectra of 0.5 � AueAg NPs (a, black), 0.5 � AueAg NPs þ 0.25 mM Mel (b, red), 0.5 � AueAg NPs þ 0.25 mM UA (c, blue),
and 0.5 � AueAg NPs þ UA þ Mel (both 0.25 mM, d, green). TEM images of (B) AueAg NPs, (C) AueAg NPs þ Mel, (D) AueAg NPs þ UA, and
(E) AueAg NPs þ Mel þ UA. The scale bar for all TEM images is 200 nm.
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citrate stabilized Au NPs [29], Mel (0.5 mM, 200 mL)
was added to the prepared AueAg NP solution (1 �
, 200 mL) and measured using UVeVis, the results of
which are represented by the red curve in Fig. 1A.
The SPR band wavelength and intensity of the
prepared AueAg NPs in the presence of Mel
redshifted slightly to 526 nm, and the absorbance
was reduced by 27.6%, indicating that Mel induced
aggregation of AueAg NPs. The TEM image dis-
played in Fig. 1C confirmed the aggregation of
AueAg NPs in the presence of Mel. From our
observation, the color change when comparing the
color of the AueAg NP solution in the absence and
presence of Mel was not obvious, suggesting that
the AueAg NPs were unsuitable for colorimetric
assay (inset image in Fig. 1A).
Our analytical method was based on a competitive

adsorptive strategy as an indirect approach to
measuring Mel. Investigating the interaction of
AueAg NPs with Mel along with that of the AueAg
NPs with the reporter is crucial. For the develop-
ment of this sensor, Mel should interact strongly
with the AueAg NPs, whereas the reporter should
have a small or negligible interaction with the
AueAg NPs. As mentioned, UA was selected as a
reporter molecule for current transduction in our
sensor. The observed analyteenanoparticle inter-
action is illustrated in Fig. 1A; Mel can interact with
AueAg NP in a solution. The addition of UA at a
quantity (0.5 mM, 200 mL) comparable to that of Mel
into the AueAg NP solution did not influence the
absorption wavelength of the nanoparticles.
Furthermore, when Mel and UA were added to the
AueAg NPs, the UVeVis spectra for the mixture of
Mel and UA were similar to those of Mel alone.
These results strongly indicate that Mel can pref-
erentially adsorb AueAg NPs, causing a particle
aggregation that is more prominent than that for
UA. The nanoparticle aggregates from the mixture
of Mel and UA were studied under TEM, as illus-
trated in Fig. 1E. Table 1 summarizes the hydrody-
namic diameters and zeta potentials of the prepared
AueAg NPs in the absence and presence of Mel and
UA. The hydrodynamic diameter and zeta potential
of the prepared AueAg NPs in the presence of Mel
and UA were larger and less negative, respectively,

than for the free-AueAgNPs, which contributed to
the induced aggregation and shielded partial nega-
tive charge of AueAg NPs, predominantly in the
presence of Mel.
After the preferential interaction of Mel on the

surface of AueAg NPs was realized, an electro-
chemical assay for the detection of Mel by using
AueAg/Nafion/GCE was conducted, as illustrated
in Scheme 1. An AueAg NP solution (5 mL) was
added to the base of GCE, followed by a Nafion film
coating, to secure nanoparticles on the modified
GCE surface. The modified GCE was then
immersed in a solution containing only UA and a PB
solution, and a significant anodic oxidation current
of UA was produced at 0.34 V. However, the anodic
current of UA was decreased in the presence of Mel
because Mel adsorbed on the prepared AueAg/
Nafion/GCE surface, thus reducing the electroactive
surface area and suppressing the electrooxidation of
UA.
The electrochemical behavior of the proposed

method was characterized in detail. Fig. 2A illus-
trates the cyclic voltammograms in the absence and
presence of Mel and UA (both 1.0 mM) on the
AueAg/Nafion/GCE. The red curve in Fig. 2A rep-
resents an anodic peak of UA produced on the
AueAg/Nafion/GCE when it was scanned anodi-
cally. The anodic current of UA, represented by the
blue curve in Fig. 2A, was significantly suppressed
after the addition of Mel to the same UA testing
solution and did not cause a dilution effect. The
peak potential did not shift significantly, suggesting
that the electrochemical process is caused by the
oxidation of UA and not a side reaction. The
reduction in anodic current may be caused by the
reduction in the transport of UA to the electrode
surface. Therefore, the transport characteristics of
UA were further studied by changing the scan rate
of CV. As illustrated in the inset in Fig. 2B, the
anodic current responses of UA were determined to
be linearly related to the scan rate, indicating an
adsorption-controlled process on the AueAg/
Nafion/GCE. The mechanism of the oxidation of UA
involves the intermediate formation of a AueN
interaction before the electron transfer from UA to
nanoparticles, and this AueN interaction was dis-
rupted and blocked by the presence of the Mel.
These findings indicate that the hydrophobic inter-
action between AueAg NPs and Mel noticeably
reduced the number of Au sites available for reac-
tion with UA. Therefore, the anodic peak of UA on
the AueAg/Nafion/GCE was suppressed after the
addition of Mel.
The electroactive molecule Ru(NH3)6

2þ was used to
confirm that the suppressed current was related to

Table 1. Hydrodynamic diameter and zeta potential of the prepared
AueAg NPs under different conditions.

Samples Hydrodynamic

diameter (nm)

zeta potential

(mV)

AueAg NPs 25.5 ± 0.4 �47.25 ± 0.86

AueAg NPs þ Mel 46.2 ± 0.4 �24.61 ± 0.67

AueAg NPs þ Mel þ UA 30.5 ± 0.1 �44.23 ± 0.49
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the adsorption of UA and Mel at the AueAgNP/
Nafion/GCE. Fig. 3A illustrates the cyclic voltam-
mograms of Ru(NH3)6

2þ in the absence and presence
of UA and Mel. We observed a well-defined

reversible peak at �0.2 V for Ru(NH3)6
2þ on the

AueAgNP/Nafion/GCE. The reduction in peak
current of Ru(NH3)6

2þ could be observed in the
presence of UA and Mel, with a larger reduction in

Scheme 1. Schematic of the mechanism for the electrochemical detection of Mel by using a AueAg/Nafion/GCE.

Fig. 2. (A) Cyclic voltammograms of the 50 mM PB solution (pH 7.0,
black), 50 mM PB solution þ 1.0 mM UA (red), and 50 mM PB solution
þ 1.0 mM Mel þ 1.0 mM UA (blue) on the AueAg/Nafion/GCE. (B)
Cyclic voltammograms of 50 mM PB (pH 7.0) in the presence of Mel
and UA (both 1.00 mM) at different scan rates. Inset: linear plot of
current vs. scan rate.

Fig. 3. (A) Cyclic voltammograms of 1.0 mM Ru(NH3)6
2þ (black), 1.0

mM Ru(NH3)6
2þ þ 1.0 mM UA (red), and 1.0 mM Ru(NH3)6

2þ þ 1.0
mM Mel (blue) on the AueAg/Nafion/GCE. (B) EIS of the bare GCE
(black), AueAg/Nafion/GCE (red), and AueAg/Nafion/GCE þ 1.0 mM
Mel in 5.0 mM K3[Fe(CN)6] containing 0.1 M KCl.
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the presence of Mel compared with that of UA. As
expected, the anodic peak observed at 0.32 V in Fig.
3A corresponds to the oxidation of UA (similar to
the peak potential on the red curve in Fig. 2A), and
no anodic peak was observed in the Mel solution.
Therefore, the reduction in peak current of
Ru(NH3)6

2þ was caused by a reduction in the elec-
troactive area of the nanoparticles because of the
adsorption of UA and Mel.
Electrochemical impedance spectroscopy (EIS)

was used to measure the interfacial properties of the
modified GCE. The semicircle diameter at higher
frequencies corresponds to the charge transfer
resistance. Fig. 3B shows the EIS of the bare GCE
and AueAgNP/Nafion/GCE in a solution of 5.0 mM
K3[Fe(CN)6] and 0.1 M KCl without and with Mel.
The EIS of the bare GCE with a large semicircle was
found (black). When AueAgNPs and Nafion were
modified on the GCE surface, the resistance was
decreased (red), which was a strong proof that the
AueAgNPs and Nafion were excellent electric
conductive materials that accelerated the charge
transfer. Subsequently, when the AueAgNP/
Nafion/GCE was in a solution of 5.0 mM
K3[Fe(CN)6] and 0.1 M KCl containing Mel, the
resistance was increased (blue), because Mel
inhibited the charge transfer between the redox
probe and the electrode, which suggested that Mel
was strongly adsorbed on the AueAgNP/Nafion/
GCE surface.

3.2. Optimal conditions

Additional assay parameters were evaluated to
further optimize electrochemical detection. The ef-
fect of the Agþ:Au3þ molar ratio in AueAg NP
synthesis was tested over ranges of 5e30 (Fig. 4A)
and compared with the relative anodic current
variation determined by the formula ðI0 � IÞ=I0,
where I0 and I are the anodic current of UA (1.0 mM)
in the absence and presence of Mel (1.0 mM),
respectively. The bar chart in Fig. 4A illustrates that
the peak current variation reached its maximum at
an Agþ to Au3þ molar ratio of 10, corresponding to
the AgeAu ratio for maximum sensitivity to Mel. A
higher silver ratio corresponds to greater sensitivity
of Mel detection. Ag components in AueAg NPs are
believed to correspond to higher charge transport
during the oxidation of UA, but quantities of Ag
over 10-fold higher than that of Au could lead to the
loss of adsorption sites for Mel, thus increasing the
anodic current of UA. Therefore, a molar ratio of
Agþ to Au3þ of 10 was selected as the optimal con-
dition for further investigation.
The volume of AueAg NP solution dispensed on

the GCE may affect the performance of this sensor
because the electroactive area varies with particle
loading. Deposition solutions ranging from 2 to 7 mL
(Fig. 4B) were also tested, which revealed that the
anodic current variation peaked at 5 mL. This result
is attributed to the saturated surface coverage of

Fig. 4. Optimization of the AueAg/Nafion/GCE to determine Mel quantity. (A) Molar ratio of Agþ to Au3þ, (B) volume of AueAg NPs, (C) pH value,
and (D) concentration of PB solutions. The error bars represent the standard deviations for triplicate experiments.
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AueAg NPs on the GCE surface at 5 mL, ideal for the
optimal volume of AueAg NP solution in the pre-
sent study.
PB solutions with different pH values and con-

centrations were evaluated as potential factors in the
sensitivity of the sensor. As illustrated in Fig. 4C, the
maximum current variation was obtained when the
pH value of the PB solution was 7.0, which may be
because higher pH values hinder the adsorption of
UA (pKa 5.4) on the negatively charged HEPES
AueAg NP surface (pKa 6.0e8.0 for HEPES).
Furthermore, the effects of PB buffer concentrations
in the range of 25e200 mM were tested (Fig. 4D),
which revealed constant current variation within

that range. Therefore, 50 mM PB (pH 7.0) was
selected as the optimal condition for further
investigations.

3.3. Sensitivity and selectivity

The sensitivity of the proposed electrochemical
method for the detection of Mel was investigated
using DPV under the optimal conditions to deter-
mine the anodic current response of UA at different
Mel concentrations. The anodic peak current of UA
decreased with an increasing concentration of Mel
(Fig. 5A). A linear relationship was observed from
the plot of current variation against Mel concentra-
tion in the range of 2.5e70 nM (R2 ¼ 0.947; inset in
Fig. 5A). The proposed electrochemical method for
the detection of Mel exhibited a LOD (signal-to-
noise ratio ¼ 3) of 1.8 nM, which indicated much

Fig. 5. (A) DPV responses of various concentrations of Mel in a 50 mM
PB solution (pH 7.0) with 100 nM UA as the electroactive element. DPV
conditions: pulse potential ¼ 50 mV, pulse width ¼ 50 ms, pulse in-
terval ¼ 250 ms. Inset: the difference in the peak current of the AueAg/
Nafion/GCE at different Mel concentrations. (B) The selectivity of the
AueAg/Nafion/GCE for Mel. Error bars represent the standard de-
viations for triplicate experiments.

Fig. 6. (A) Reproducibility test: current variation for UA (1.0 mM) by
using 10 pieces of AueAg/Nafion/GCE in the absence and presence of
Mel (1.0 mM). (B) Stability test: current variation for UA (1.0 mM),
tested using the AueAg/Nafion/GCE in the absence and presence of Mel
(1.0 mM), corresponding to the daily signal variation over 10 days.
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greater sensitivity than that of the standard
approach for detecting permissible concentrations
of Mel (20 mM) in food set by US FDA.
To investigate the selectivity of the proposed

electrochemical method, Mel and other interference
components (ammonia, phenylamine, KCl, NaCl,
CaCl2, MgCl2, glucose, sucrose, lactose, fructose,
glycine, adenine, and thymine (each 10 mM)) were
individually added to UA solutions (1.0 mM). The
anodic current was measured using the prepared
AueAg/Nafion/GCE. As illustrated in Fig. 5B, only
Mel induced significant current variation, indicating
that the proposed electrochemical method provides
excellent selectivity for Mel.

3.4. Reproducibility, stability, and practical
applications

To assess the reproducibility of the prepared
AueAg/Nafion/GCE, we measured the anodic
current of UA (1.0 mM) in the absence and pres-
ence of Mel (1.0 mM) with 10 pieces of AueAg/
Nafion/GCE (each electrode performed three cyclic
voltammograms) and assessed the current varia-
tion. Fig. 6A displays the results of these experi-
ments. The RSD was determined to be 14.2% from
10 different electrodes and 2.2%e9.3% within a
single electrode. To test the stability (shelf life) of
the prepared AueAg/Nafion/GCE, we evaluated
the anodic current of UA (1.0 mM) in the absence
and presence of Mel (1.0 mM) every day for 10
days and calculated the current variation (Fig. 6B).
The RSD of the current variation was determined

to be less than 7.1% for 10 days. For ANOVA, we
selected a confidence level of 95%. The calculated F
value was 1.28 (Table 2), which is less than the
critical value of F (2.39). Therefore, there was no
significant difference in the electrochemical per-
formance of the prepared AueAg/Nafion/GCE
over 10 days. These results indicated that the
AueAg/Nafion/GCE could provide excellent elec-
trochemical performance in terms of reproduc-
ibility and stability.
To validate the practicality of the proposed elec-

trochemical method, the prepared AueAg/Nafion/
GCE was used to detect Mel in milk powder and cat
food samples. These samples were pretreated ac-
cording to the procedure described in 2.6. Mass
spectrometry did not reveal the presence of Mel in
these samples. Table 3 displays the spiked concen-
tration of Mel and recovery values for the Mel-free
milk powder and cat food samples. The recovery
values for the detection of Mel in milk powder A,
milk powder B and cat food samples were 92.4%e
102.2%, 95.8%e102.1%, and 95.9%e103.7%, respec-
tively. Furthermore, the RSD values for the detec-
tion of Mel in milk powder A, milk powder B and cat
food samples were 8.2%e8.9%, 8.5%e9.3%, and
1.7%e8.7%, respectively. These findings indicate
that the proposed electrochemical method can
achieve satisfactory reproducibility for the detection
of Mel in milk powder and cat food samples without
being influenced by the sample matrix.

Table 2. ANOVA test of the decreasing rate of UA signal using the AueAg/Nafion/GCE for 10-day measurement.

Source of variation Sum of squares Degree of freedom Mean square F

Between days 0.006049 9 0.0006721 1.28

Within days 0.01053 20 0.0005265

Total 0.016579 29

Table 3. Parameters for the analysis of milk powder and cat food samples with Mel by using the proposed method.

Samples Spiked Mel (nM) Found Mel (nM) Recovery (%) RSD (n ¼ 3) (%)

milk powder A 5 4.62 92.4 8.4

10 9.49 94.9 8.9

50 51.1 102.2 8.2

70 70.5 94 7.9

milk powder B 5 4.79 95.8 8.5

10 9.59 95.9 9.2

50 49.9 99.8 9.3

70 71.5 102.1 8.8

cat food 20 19.4 97 2.5

30 31.1 103.7 3.1

40 40.5 101.3 2.4

50 47.9 95.9 1.7

60 61.0 101.7 8.7
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4. Conclusions

We demonstrated a simple electrochemical
method for the detection of Mel. The proposed
method is based on the competitive adsorptive
behavior of Mel on a AueAg/Nafion/GCE, which
induces suppression of the anodic response of UA.
We observed a LOD of 1.8 nM for Mel, which is
significantly lower than the 20-mM limit permitted by
the US FDA for food. Advantages of the reported
method are the simplicity of the fabrication proced-
ure of the AueAg/Nafion/GCE and measurement
reproducibility and stability. The prepared AueAg/
Nafion/GCE was employed to detect Mel in milk
powder and cat food samples, with recovery ranging
from 92.4% to 103.7%.
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