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Abstract

Malachite green (MG), a prohibited but still found antimicrobial in aquafarm and during live fish shipping, is a hot
target in food safety screening. Herein, a novel chewing gum based flexible SERS (G-SERS) sensor was proposed for
rapid sampling and detection of MG on live fish skin. The whole analysis takes <5 min, while the limit of detection for
MG is 0.73 pg. Different from other reports, MG contaminated live fish was monitored daily with the G-SERS sensor,
during which the fish was firstly raised in 0.5 ppm MG solution for one day, followed by freshwater for a week. It was
found that the SERS signal of residue MG on fish skin could still be seen even on the sixth day, roughly the sale cycle of
live fish in a marketplace. Furthermore, the method was also applied for MG screening on the skin of fish purchased
from a supermarket and a local street marketplace. MG was found on some fishes from the latter but not from the
former, which was cross-validated by LC-MS, suggesting MG risks still exist in smaller marketplaces. This work
demonstrated the feasibility of using the flexible SERS sensor for onsite food safety screening.
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1. Introduction

I n recent years, formulated feeds (containing
antibiotics, antifungal drugs, and other phar-

maceuticals), pesticides and disinfectants have
been widely used in aquaculture [1]. It may raise
some serious concerns on the safety of seafood [2].
For example, antibacterials have been frequently
detected in fish products [3,4], which is known to
cause environmental and health issues (e.g., anti-
biotic resistance for bacteria [5]). Malachite green
(MG), a good antibacterial but with potential car-
cinogenicity, mutagenicity, and teratogenicity, is
prohibited in many countries [6,7]. In fact, it is one
of the regulated inspection items for aquatic

products globally because it is still used illegally
owing to its low cost and high effectiveness,
particularly in developing countries [8]. What's
worse, the culture of pursuing live fish in countries
like China has put a lot of stress on the supply
chain, which could lead to the abuse of MG to
improve the survival rate during live fish shipping,
and hence presents the MG exposure risk right on
the dinner table [9]. Therefore, onsite MG
screening on live fish during shipping or in the
market is very important to ensure food safety.
The primary analytical methods to detect MG

include high-performance liquid chromatography
(HPLC) [10] and liquid chromatography-tandem
mass spectrometry (LC-MS) [6], which have high
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detection accuracy. Nevertheless, at least two issues
are related to these methods. For one, the time
frame from the aquafarm to the dining table (ship-
ping plus sales cycle) is usually short (roughly less
than a week); for another, the culture of pursuing
live fish demands local purchasing from the
decentralized street marketplaces. The lengthy pre-
treatment procedure and bulky instruments could
seriously compromise the safeguarding role of these
methods. That is, when the (positive) test results
came back, the fish had probably already gone on
the dining table. Therefore, fast on-site screening of
MG is very necessary, especially in countries like
China, where there are many decentralized street
marketplaces and has a strong traditional culture for
live fish.
Surface-enhanced Raman scattering (SERS) is

considered to be one of the most important molec-
ular spectroscopic techniques and suitable for on-
site analysis [11,12]. In fact, there are many reports
about the detection of MG on seafood based on
SERS [1,8,13e24]. Nevertheless, the effectiveness of
the SERS methods remains to be verified. For
example, MG in fish tissues could be detected with
SERS [18,19,21,24], but it is not suitable for onsite
screening. There are also groups who devoted to the
sensing of MG on the live fish by applying MG so-
lution directly onto the body of an aquatic product
[8,14e16,20], or soaking the aquatic products into
diluted MG solution [1,17,22,23]. However, neither
of the exposing scenarios is the general practice of
illegal MG use, which usually involves raising the
fishes in ppm level of MG solution during shipping
(up to 36 h), followed by raising them in freshwater
before the sale [7,9]. MG residue (if any) will un-
dergo degradation and dissolving with time (during
the time in the market). The effectiveness of SERS
for MG sensing in this real-life scenario has not
been explored, though it is vital for MG contami-
nation risk evaluation.
Chewing gum of which the main ingredient is

gum Arabic can undergo a large deformation [25].
Thus, it has been used as a stretchable and foldable
sensor for monitoring muscle and joint motions [26].
On the other hand, gum has high viscoelasticity
which means good adhesion capacity to remove any
residual contaminants (analytes) from a surface.
Herein, chewing gum was used for the fabrication of
a flexible, adhesive and sensitive hydrogel SERS
sensor to detect MG on live fish. Citrate-reduced Ag
nanoparticles (Ag NPs) were prepared and modified
with various halogen anions, including I�, Br� and
Cl�. It was found that I� could give the highest
enhancement for MG. Thus, the Ag NPseKI

mixture was then mixed with the gum to form the
SERS sensor. The preparation procedure was shown
in Scheme 1. The sensitivity and recovery efficiency
for analyte MG, viscoelasticity, shelf-life, and
reproducibility of the prepared sensor were
explored. Later, the G-SERS sensor was applied for
the detection of MG on the fish body. In the process,
the crucian carp was firstly raised in MG spiked
water for one day, and then in freshwater for a
week, the G-SERS sensor was used to monitor the
residual MG on the fish body each day. Finally, the
proposed method was applied to the screening of
MG residues on the crucian carp purchased from a
supermarket and a local street marketplace before
verifying with results obtained from the standard
LC-MS method.

2. Material and methods

2.1. Reagents and materials

Silver nitrate (99%), sodium citrate (99%), Nile
blue A (NBA), rhodamine 6G (R6G) and MG were
supplied by SigmaeAldrich (Shanghai, China). Po-
tassium iodide, potassium bromide, potassium
chloride, and ethanol were purchased from
Shanghai Titan Scientific Co., Ltd, China. Double-
mint® gum was obtained from a local supermarket.
18.2 MU cm water (Nanopure, Thermo) was used
throughout the experiment.

2.2. Instruments

SERS measurements were performed on a
customized Raman microscope equipped with
Acton SP-2500i spectrograph (Princeton Instrument,
US) and Pixis-100BR CCD (Princeton Instrument,
US) in the whole experiment. A HeeNe laser
(14 mW) was used in the experiments. Laser power
12�mW, 50 � objective, and 5 s integration time
were used in the experiments. At least 10 spots on
the same G-SERS sensor were examined. The Ag
NPs was centrifuged in a centrifuge (Microfuge®
22 R, Beckman coulter, US) at 10,000 rpm for
10 min at 20 �C. The Ag NPs were characterized by a
Field Emission Transmission Electron Microscope
(TEM, JEM-2100 F, Japan), and the gum and G-SERS
sensor by a scanning electron microscope (SEM, FEI
Inspect F), respectively. The sampling recovery ef-
ficiency was determined by a UVeVis spectropho-
tometer (UVeVis, UV-4802H, China) at the
wavelength of 614 nm. Liquid chromatography-
mass spectrometry (LC-MS) measurements were
performed on Shimadzu LCMS-8045 (USA).
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2.3. Recommended procedures

2.3.1. Preparation of Ag NPs
Silver nitrate was used to prepare Ag NPs [27].

Briefly, 100 mL of AgNO3 (5 mM) solution was
heated to boiling with rapid stirring. 2 mL of 10%
sodium citrate aqueous solution was added quickly,
and the mixture was boiled for another 1 h. Finally,
the solution was cooled to room temperature,
denoted as 5 mM Ag NPs.

2.3.2. Preparation of G-SERS sensor
Firstly, gum was chewed for about 30 min [26]. It

was then washed with ethanol and ultrapure water
for about 5 min, respectively. Then, it was heated to
35 �C for 1 h to evaporate the excess amount of water
from the gum. Meanwhile, a certain volume of 5 mM
Ag NPs (the optimization was shown in “3.2. Opti-
mization of the SERS Sensor”) was centrifuged and
the supernatant was removed. The remaining
mixture in the centrifuge tube was about 100 mL.
Then, 10 mL of 100 mM halogen ion solution was
added to the 100 mL concentrated Ag NPs and the
mixture was vortexed for 1 min. Immediately, the Ag
NPs-halogen ionmixture was added to 0.3 g chewing
gum, which was heated to 35 �C for another 30 min.
The chewing gum was repeatedly folded and
stretched during this period with a glass rod. The
fabrication process involves no toxic chemicals.

2.3.3. SERS analysis
In this work, there were two protocols: (1) For

optimization and characterization of the G-SERS

sensor: 5 mL MG aqueous solution was dropped on
about 0.1 g G-SERS sensor, which was subjected to
SERS analysis after the solvent evaporated. (2) For
the daily monitoring of the sensor: ten crucian carp
(Carassius carassius) from the local supermarket were
randomly divided into two groups: the experimental
group and the control group. The control group was
raised in a 75 L aquarium with tap water for a week.
The experiment group was first exposed to
0.5 ppm MG aqueous solution [7] in another 75 L
tank for one day and then raised in the tap water for
a week (Fig. S1C) as well. In the process, water was
changed daily and O2 was supplied for both groups.
The G-SERS sensor was used to stamp on the fish
body (Fig. S1B) and then was analyzed on the
Raman microscope daily for 6 days. Finally, MG on
the crucian carp from 4 stalls in a street marketplace
and a supermarket was monitored on the same day
when purchased by this method, which was cross-
validated by LC-MS approach [28] (supporting
information).

2.3.4. Sample recovery efficiency (SRE) analysis
The SRE of the G-SERS sensor for MG was

determined by a UVeVis spectrophotometer [29].
Briefly, 20 mL of MG aqueous solution was dropped
on a frozen fish. After 10 min, the G-SERS sensor
was used to stamp on the fish body to recover the
MG. Finally, the sensor was placed in a beaker filled
with 10 mL of deionized water and sonicated for
20 min to extract the MG. The experimental condi-
tions for the UVeVis analysis can be found in
Fig. S2.

Scheme 1. Schematic representation of the preparation and application of the G-SERS sensor.
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3. Results and discussion

3.1. Preparation and characterization of the G-
SERS sensor

The fabrication of the G-SERS sensor is very
straightforward: citrate-reduced Ag NPs (Fig. 1A)
were prepared and then modified with KI. Finally,
the Ag NPseKI mixture was doped in the gum to
form the SERS sensor (Schemes 1 and S1A). The
gum and G-SERS sensor were characterized by
SEM, which were shown in Fig. 1B and C, respec-
tively. It was clear that scattering NPs aggregates
can be found in Fig. 1C. Besides, the color of the
latter (the inset in Fig. 1C) became dark compared
with the former (the inset in Fig. 1B), showing that
gum was successfully doped with Ag NPs (Fig. 1C).

3.2. Optimization and characterization of the SERS
sensor

Reports have shown that Ag NPs modified with
iodide ion had a significant effect on the SERS signals
of some analytes [30]. Herein, the same strategy was
used to fabricate the G-SERS sensor through Ag NPs
modified with KI. The SERS spectra in Fig. 2A showed
the effect of KI on the signal of MG. It was found that
the G-SERS sensor for the analysis of MG had an
evident signal enhancement in the presence of gum,
Ag NPs and KI. And the G-SERS sensor was found to
have negligible interference with MG due to its clean
Raman background. For MG, the major Raman peaks
appeared at 1175, 1369 and 1618 cm�1 were ascribed to
ring CeH in-plane bending (1175 cm�1), N-phenyl
stretching (1369 cm�1) and ring CeC stretching
(1618 cm�1), respectively [31,32]. We also explored the
effect of remaining halogen ions on SERS perfor-
mance. The SERS spectra of MG on the G-SERS
sensors in the presence of KCl, KBr, and KI were
shown in Fig. 2B, respectively. It was found that G-
SERS sensor fabricated with KI modified Ag NPs had
the highest intensity. It's believed that I� may change
the shape of the silver surface in addition to inducing
the aggregation to achieve a better signal [33]. Thus,
we decide to use KI modified Ag NPs in the prepa-
ration of G-SERS sensor in the following experiment.
We then tried to optimize the concentration of I� in

the G-SERS sensor. To address this, 2e80 mL of
100 mM KI was mixed with 10 mL Ag NPs, and the
mixture was mixed with 0.3 g gum for preparing the
G-SERS sensor, respectively. The results were shown
in Fig. 2C. Obviously, the signal of MG increased
firstly and then decreased with the augment of the
amount of KI. It was found that the G-SERS sensor

mixed with 10 mL of 100 mM KI had the best SERS
signal (at 1619 cm�1). This is probably caused by Ag
NPs over aggregation induced by excessive KI [30],
which is known to be able to lower the SERS per-
formance of given SERS sensor. Thus, 10 mL of
100 mM KI was used in the following experiments.
After optimizing the amount of I�, the effect of Ag

NPs concentration was then explored to get the
optimal G-SERS sensor. In Fig. 2D, the SERS per-
formance for MG at 1618 cm�1 was obtained with
0.3 g gum containing 3e25 mL of Ag NPs which was
concentrated and modified with 10 mL of 100 mM KI,
respectively. Apparently, the signal increased first
and then gradually decline with the increase of Ag
NPs. The best signal was achieved at the amount of
10 mL Ag NPs (before centrifuge). To be specific,
lower concentration of Ag NPs can not produce
sufficient SERS hot spots (Fig. S3A), resulting
weaker SERS signal [34]. The increase of the SERS
signal before 10 mL was explained by increased Ag
NPs aggregates with the increased amount of Ag
NPs [13]. However, at volume larger than 10 mL,
over aggregation of Ag NPs (Fig. S3B) could happen,
which is known to be inefficient in SERS per-
oformance [27].
In conclusion, the optimal procedure to fabricate

the G-SERS sensor was as follows: 10 mL Ag NPs
was concentrated and mixed with 10 mL of 100 mM
KI, and the mixture was then added into 0.3 g gum.

3.3. Reproducibility and stability of G-SERS sensor

The optimal G-SERS sensor was compressed with
a glass slide to form a flat surface for testing the
reproducibility of the gum sensor. Briefly, 5 mL of
10 mM aqueous solution of MG was added onto the
sensor. This experiment was repeated with 10 gum
sensors, and ten SERS spectra were recorded from
each gum. Fig. 3A showed the results of these ex-
periments. The relative standard deviation (RSD%)
was found to be 15% between different sensors and
9e25% within a single G-SERS sensor, which was
comparable to other reports [27]. In order to test the
shelf life of the G-SERS sensor, 3 g of the G-SERS
sensor was prepared and sealed in fridge at 4 �C.
And 0.1 g of the G-SERS sensor was cut and explored
for its SERS performance each day for a week,
respectively. Fig. 3B showed the variation of SERS
intensity of MG at the peak of 1618 cm�1. The RSD of
signal intensities was found to be less than 11% for 8
days. Meanwhile, there was no significant difference
in SERS performance of the G-SERS sensor in 8 days
based upon the t-test (Table S1), confirming good
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stability of G-SERS sensor. Hence, the G-SERS
sensor has good reproducibility and stability.

3.4. LOD of the G-SERS sensor

To determine the SERS sensitivity, 5 mL of various
concentrations of MG aqueous solution were added
onto the G-SERS sensor. The results were shown in
Fig. 3C. It is clear that the characteristic peaks of MG

at 1175 cm�1 and 1618 cm�1 can still be identified
even for 5 mL of 1 nM MG (1.82 pg). The linear
relationship between SERS intensity I and MG
concentration C at 1e500 nM was shown in Fig. 3D.
The linear equation at 1618 cm�1 was
I1 ¼ 174.32C þ 2107.90 (R2 ¼ 0.9362). The RSD% at
each concentration was found to be within
9.53e23.34%. The LOD was found to be 0.4 nM
(0.73 pg). The linear equation at 1175 cm�1 was

Fig. 1. TEM of Ag NPs (A), SEM images of gum (B) and G-SERS sensor (C). The insets in B and C are the photos of the gum and G-SERS sensor.

Fig. 2. A: The SERS spectra of MG with G-SERS sensor (a), MG with Ag NPs and gum mixture (b), MG with Ag NPs and KI mixture (c), MG with KI
and gum mixture (d) and G-SERS sensor (e). B: The effect of halogen ions (10 mL 100 mM). Spectra (a) to (c) were KI, KBr and KCl, respectively. C:
SERS performance of G-SERS sensor (0.3 g) modified with different KI: 2, 5, 10, 20, 30, 50, and 80 mL, respectively. D: SERS performance of G-SERS
sensor modified with different amount of Ag NPs: 3, 5, 10, 15, 20, and 25 mL, respectively. 5 mL of 1 mM MG was used as the Raman probe. Laser
power: 12 mW. Integration time: 5 s. Objective: 50 �.
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I2 ¼ 126.19C þ 1689.78 (R2 ¼ 0.9553). The RSD% at
each concentration was found to be 9.03e24.50%. To
further prove its sensitivity, R6G and NBA were also
examined, and the LODs were both 5 fmol (Fig. S4),
indicating the G-SERS sensor had good sensitivity.

3.5. The sampling recovery efficiency (SRE) of the
G-SERS sensor

We evaluated the SRE of MG on the fish by the G-
SERS sensor (Fig. S2). The value was found to be
72.30%, showing that the G-SERS sensor had good
recovery efficiency [35]. The possible reasons for the
relatively low collection efficiency were the rough
surface of the fish and the permeation of MG into
the fish.

3.6. Detection of MG on the fish skin

Owing to the good flexibility, stability, and re-
covery efficiency of gum sensors, it could be applied
for rapid, direct, and on-site detection of MG on the
live fish. Briefly, the prepared G-SERS sensor was
used to stamp on the live fish (Fig. S1B) each day,

and the SERS spectra were recorded. The results
from one of the fish were shown in Fig. 4A. It was
found that the blank fish had no SERS features of
MG, and the signal of MG on the spiked fish in tap
water decreased with time. The peak of residual MG
on the spiked fish at 1618 cm�1 and 1175 cm�1 on
the sixth day in tap water still could be detected. We
suspected that the signal of MG gradually decreased
because some MG on the spiked fish partly con-
verted to leucomalachite green (LMG) [36] and/or
partly dissolved in water. The remaining results
from other fish were shown in Figs. S5eS11. Note
that the SERS signal of MG residue on fish skin
could not be found with the G-SERS sensor after the
seventh day, while it was still present in fish tissue
(Table S2). This could be justified by the two sam-
pling methods. The G-SERS is intended to monitor
the MG residue on fish skin, while the LC-MS ex-
amines the fish tissue. Since the proposed G-SERS
method is intended to safeguard any potential MG
adulteration happening after leaving the farm and
before the dining table, which is usually less than 1
week, we believe the proposed method is reliable.

Fig. 3. A: Statistics of 10 G-SERS sensors obtained by using 5 mL of 1 mM MG as a Raman probe. B: Statistics of 5 mL of 1 mM MG aqueous solution
on the G-SERS sensor corresponding to the signal variation every day in 8 days. 0 is that the sensor was prepared and used on the same day. C: The
SERS spectra of different amount of MG: 500 (a), 100 (b), 50 (c), 10 (d), 1 (e), and 0 (f) nM, respectively. D: The plots of SERS intensity at
characteristic peaks of 1175 and 1618 cm�1 with different concentrations of MG, respectively.
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We finally applied the proposed method to detect
MG on the live fish from the local supermarket and
street marketplace (four stalls), the results were
shown in Fig. 4B. It was found that the peak of MG
on the fishes from the street marketplace at 1175 and
1618 cm�1 could be identified, while that from the
supermarket could not. As shown in Table 1 and
Fig. S12, LC-MS was used to quantify the amount of
MG in the samples. The results coincided with the
results of SERS analysis. In other words, the SERS
method could be used to monitor MG contamina-
tion risks on live fish.

4. Conclusion

In conclusion, a novel dual functional gum based
flexible SERS sensor (G-SERS) was proposed for
monitoring MG contamination risks on live fish dur-
ing shipping and in the marketplaces. The combina-
tion of iodide ion and chewing gum helps the signal
enhancement on Ag NPs, making it possible for the
detection of MG at 0.73 pg. The flexibility and visco-
elasticity of the chewing gum make it possible for the
direct sampling of a minute amount of MG on fish
skin. To illustrate the effectiveness in food safety

screening of the proposed G-SERS sensor, crucian
carp was raised in 0.5 ppmMG solution for 1 day, and
then in fresh water for another 6 days to mimic the
live fish shipping and sale cycle, and monitored daily
for the presence of MG. SERS signal of the residual
MG on fish could be still found even after 6 days in
fresh water. Crucian carp from the local supermarket
and street marketplace was also screened and cross-
validated with LC-MS. Positive results were found on
some fishes from the local street marketplace, sug-
gesting MG risks still exist in smaller marketplaces.
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