
The potential role of phenolic compounds on
modulating gut microbiota in obesity

Gow-Chin Yen a, Hsin-Lin Cheng b, Li-Yu Lin b, Shiuan-Chih Chen c,d, Chin-Lin Hsu b,e,*

a Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
b Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
c Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
d Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
e Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan

Abstract

Obesity is a rising public health issue and challenge which is tightly correlated with socio-economic development
paralleled with increased energy intake and sedentary behavior that subsequently cause adipose tissue accumulation.
Physiological and metabolic status changes during obesity development have been suggested with low grade inflam-
mation of gastrointestinal tract. The gut microbiota plays an essential role in regulating whole body energy metabolism
and also lipid accumulation, and immunity of host. However, the detail mechanism of which the gut microbiota
composition influence obesity development in humans still need deeper investigation owing to the complex patho-
physiology of such disease. Recently, the consumption of phenols-rich food has been showed to have physiological
function that attribute to improve gut microbiota and benefit body weight management. Here, we review the current
knowledge regarding phenolic compounds that regulate the development of obesity and the importance of the axis that
link dietary-induced gut microbiota change and metabolic health of host. We also discuss dietary intervention reshaping
gut bacterial community to modulate obesity.
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1. Introduction

O besity is a multifactorial chronic disorder,
with a global prevalence over 600 million

people, and it has also demonstrated a drastically
increased over the past decades. According to the

World Health Organization (WHO), people who
have a body mass index (BMI) > 30 are defined as
obesity [1]. The common pathway to develop
obesity is via excessive calories consumption
compared with calories burned; in modern life-
style, increased intake of fats and sugars, and
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insufficient physical activity which could eventu-
ally lead to obesity. Obesity stimulated the
secretion of pro-inflammatory cytokines, which
increase the risk of developing insulin resis-
tance and type 2 diabetes mellitus (T2DM) [2e4].
Indeed, obese adipose tissue expansion is corre-
lated with adipocyte hypertrophy and accompa-
nied by altering population of immune cells and
elevated adipokines production [5e7]. Recent
studies pay much attention on host and environ-
mental factors which might influence energy ho-
meostasis [4,8e10].
It is well known that dietary habits greatly influ-

ence the composition and diversity of gut microbiota
which play a pivotal role in inflammation and obesity
[11,12]. Although genetic variants were indeed asso-
ciated with determination of body weight, the
explanation of raising incidence of obesity is fairly
modest. Since the evidence of lean mice received
transplants from human intestinal microbiota sug-
gested that the obese phenotype can be transfer form
donor [13], the manipulation of dietary pattern to
microbiota bio-function has sparked considerable
interest. Bacteroidetes are able to degrade dietary
polysaccharides, metabolizes dietary toxins, against
enteric bacterial and particularly specialized to target
resistant dietary polymers which are structural
components of plants [14,15]. Therefore, diet change
in intestine interact with gut microbiota could pre-
vent against obesity and its related complications
even liver disease [16e18].

Polyphenols are abundant phytochemicals ubiq-
uitously present in plants such as fruits and vegeta-
bles, and exhibit a wild spectrum of pharmacological
or nutritional properties and are known to prevent
against oxidative stress and disease-related compli-
cations [18,19]. Based on the difference in chemical
structure, polyphenols can be further classified in
series main classes, includes phenolic acids, flavo-
noids, stiblins, curcuminoids, and lignans [20,21]. The
bioavailable portion of nature compounds which
might exert the action as a potential prebiotics for the
maintenance of gut microbiota balance. The potential
use of phenolic compounds help preventing obesity
via increasing calorie expenditure, decrease adipo-
genesis, inhibit adipocyte differentiation, and regu-
late lipid metabolism were systemically documented
[22e24]. This review offer a systemic literature
related to the role of phenolic compounds in the
pharmacological strategies for in vivo, in vitro, and
even clinical investigation to assess the anti-obesity
effect through modulation of microbiota.

2. Obesity

Fundamentally, obesity is a result of excessive fat
accumulation which contributed by several factors,
including long-term energy consumption, physical
inactivity, metabolism, genetic makeup, medication
and other environmental factors [25]. Recent studies
demonstrate that excessive consumption of high-fat
food represents a major environmental factor which
is greatly associated with obesity related insulin
resistance, glucose intolerance, and cholesterol

Fig. 1. Schematic representation of obesity and its related complication. The progression of obesity involves multiple physiological changes that may
contribute to obesity related co-morbidities.
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metabolism [26e28], which can contributed to the
pathogenesis of obesity co-morbidities (Fig. 1).
Among environmental factors, gastrointestinal
microbiota diversity is believed to affect energy
metabolism of host and food intake is described to
shape the microbiota composition [29]. As mentioned
earlier, germ-free mice with humanized gut micro-
biome from obese people showed an increased in
body weight [30,31]; high-fat diet altered gut com-
munity, resulting in a changes of microbiome gene
expression [32,33]. The adipose tissue was character-
ized as a passive reservoir for energy storage but also
known to play a pivotal role in both autocrine and
endocrine level [34e37], glucose homeostasis [38,39],
dyslipidemia [40], and inflammation [41]. Obesity
increased lipid production and subsequently leaded
to free fatty acids released, which cause lipid peroxi-
dation and related lipotoxicity [42]. The intrahepatic
lipid accumulation was associated with upregulation
of genes involved in lipid catabolism and pro-in-
flammatory cytokines, such as peroxisome pro-
liferator-activated receptor gamma (PPARg) [43] and
tumor necrosis factor alpha (TNF-a). Notably, some
studies suggested that inflammatory factors including
TNF-a, interleukin 1a (IL-1a), interleukin 6 (IL-6), and
C-reactive protein (CRP) are linked to impaired in-
sulin resistance and low-grade chronic inflammation
of gastrointestinal tract [44,45]. Studies on the gene
expression of inflammatory factors have revealed that
a higher inflammatory statuswas observed in high-fat
diet feeding mice [46]. In addition, adipose tissue
excess also increased reactive oxygen species (ROS)
formation and free fatty acids release, and subse-
quently leads to the development of oxidative stress.
Oxidative stress is critical to induce DNA methyl-
transferase 1 (DNMT1) expression and is associated
with aberrant DNA methylation [46]. Dietary in-
terventions such as calorie restriction, probiotic sup-
plementation are emerged to modulated gut
microbiota and provide valuable impact in therapeu-
tic measurement of metabolic disorders. Recently,
nature products, polyphenols have proposed to
improveglucosemetabolism [47],whichalso aspotent
epigenetic active antioxidants and ameliorating
oxidative stress. Thus, the used of phenol-rich foods
have demonstrated to reduce gut microbiota dysbio-
sis, improve systemic inflammatory status, and insulin
signaling of diet-induced obese mice model, which
shows promise as a potential strategy to alleviate
obesity-associated diseases.

3. Obesity and microbiota

In this part, we will pay our attention on the role
of gut microbiota in the pathogenic mechanisms of

obesity. Recently, gut microbiota represent a meta-
bolic gateway, through the interaction with host
nutritional environment, particularly involved in
modulation of chronic condition such as inflamma-
tion, energy imbalance and body weight increase
[48,49]. Human gut microbiota is a complex
ecosystem and recent evidence suggested a role of
microbiota in fat metabolism.
Diet represents an instrumental factor in alter-

nating the symbiotic relationship of mammalian gut
microbiota, which deeply involved in the functions
of metabolic diseases. It was suggested that the ratio
of Firmicutes/Bacteroidetes represent the imbalance
status of gastrointestinal tract, and served as an in-
dicator of health condition [50]. High-sugar or high-
fat diet consumption, particularly abundant in
saturated fatty acids, result in increasing the relative
abundance of Firmicutes species at intestinal level
in mice models [13]. Data obtained in mice and
humans indicated that short-term diet intervention
caused a reduction in the abundance of Bacter-
oidetes within a single day, and these changes may
result from the modulation of microbiota gene
expression, altered metabolic pathway [51,52].
Similar effect was found in controlled-feeding study
that high-fat/low-fiber or low-fat/high-fiber diet
intervention rapidly changed gut microbiota
composition within 24 h, although the enterotype
change required long-term dietary alteration [53].
Moreover, a high-fat and high-sugar dietary modi-
fication did not induce obesity and obesity-associ-
ated metabolic complication in germ-free mice
model [54]; other evidence from microbiota trans-
plantation suggested that an intestinal dysbiosis
significantly increase body fat accumulation and
particularly insulin resistance [54,55]. These evi-
dences reveal that the obese phenotype is trans-
ferrable via the intestinal microbiota in mice.
The direct or indirect effect of high-fat diary con-

sumption cause increase microbiotaeproduced lipo-
polysaccharide (LPS), which is regarding as a
potential mechanism that triggers the development of
inflammation through toll-like receptor 4 (TLR4)
dependent pathway. Studies in mice showed that 2e4
weeks consumption of high-fat diet was associated
with high LPS level in plasma, which was named
metabolic endotoxemia [56]. Furthermore, elevated
LPS concentration is linking to reduce intestinal tight
junction protein expression, subsequently lead to the
lost of intestinal barrier integrity [57,58]. Although the
interactions between gut microbiota and changes in
intestinal epithelium integrity have been docu-
mented, the convincing evidence and prominent
mechanism that coordinate these observations still
needed to be further investigate.
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Accumulated evidences revealed that obesity is
greatly correlated with the richness of gut micro-
biota, which may lead to the reduction the diversity
and composition. Comparison of the differences in
microbial composition across the human subjects,
diet-induced obese mice and genetic modified ani-
mal model clearly showed the dysbiosis in the
richness and diversity of gut microbiota (Table 1)
[13,59e66]. Except for the evidences of dietary ef-
fects on gut microbiota that we mentioned previ-
ously, gut microbiota aberrancies appear to mediate
the risk of specific disease development. Emerging
studies strengthened the interplay between gut
microbiota dysbiosis and obesity-related complica-
tion and identified several texa that significantly
correlated with the development and pathophysio-
logical consequences of diseases both in human
subjects and animal models (Table 2) [65,67e70].

4. Phenolic compounds and microbiota

High-fat diet-fed mice as a model for the dysbiosis
of gut microbiota have been well documented.

Recently, the anti-obesity effect of certain phyto-
chemicals has been explored to reverse high-fat
diet-induced change on microbiota composition and
intestinal physiology [71]. For instance, the imbal-
ance between Firmicutes to Bacteriodetes is largely
linked to obesity development and insulin resis-
tance. Concerning plant secondary metabolites,
polyphenols may protect against obesity-associated
metabolic complications and even weight loss
[72,73]. In a similar way, feeding C57BL/6J mice with
high-fat diet supplemented with green tea, oolong
tea, and black tea infusion for 13 weeks that
increased diversity and change the community of
gut microbiota, and decrease high-fat diet-induced
accumulation of lipids in adipose tissue and in-
crease in body weight [74]. Among these three types
of tea, several phenolic compounds including
phenolic acids, flavonols and alkaloids, which may
modulated the composition of gut microbiota such
as Alistipes, Rikenella, Akkermansia etc. Anthocy-
anins-rich fruits such as grapes and berries show
promise as potential inhibitor for reducing inflam-
matory cytokines through nuclear factor kappa light

Table 1. Summary of studies investigating the impact of obesity and associated gut microbiota dysbiosis.

Subjects Main Finding References

Overweight and normal-weight pregnant women [Bacteroides
[Staphylococcus

[59]

Obese people assigned to FAT-R Obese people or CARB-R low calorie diet YBacteroidetes
[Firmicutes

[60]

Obese and lean twins [Actinobacteria
YBacteroidetes

[61]

ob/ob and lean ob/þ mice YBacteroidetes
[Firmicutes

[13]

C57BL6J (WT) and Fiaf �/� mice [Firmicutes/Bacteroidetes [62]
Morbidly obese individuals vs. normal weight individuals [Prevotellaceae [63]
Twin-pairs from UK population YChristensenellaceae families

YRikenellaceae families
YMollicutes class
YDehalobacterium genus

[64]

LifeLines-DEEP participants YAkkermansia genus
YChristensenellaceae family
YTenericutes phylum

[65]

ob/ob mice and HF-fed male C57BL/6 mice YAkkermansia muciniphila [66]

Table 2. Summary of studies investigating the relationship of obesity-related complication and gut microbiota profiles.

Obesity-relative complication Subjects Main Finding References

Dyslipidemia Human/LifeLines-DEEP cohort YBacteroidetes phylum [65]
Gastrointestinal abnormalities CD and UC patients YFirmicutes phylum

[Bacteroidetes phylum
[67]

Hypertension HFD/Female SD rat [Firmicutes/Bacteroidetes
YLactobacillus genus
[Verrucomicrobia phylum

[68]

Pulmonary abnormalities OSAHS patients/China YRuminococcaceae [69]
Type 2 diabetes Human/Iran [Lactobacillales

YBacteroides spp
[70]
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chain enhancer of activated B cells (NF-kB) signal
transduction and increase PPAR level [75]. More-
over, results of experiments in which diets-based
supplement infusion given to moderate fat diet
feeding mice reduced fatty acid profiles, inflamma-
tory markers, and deleterious sulfidogenic bacteria;
increase the abundance of Akkermansia mucinophila
resides in the mucus layer of proximal colon [76]. A
combination of quercetin and resveratrol dramati-
cally prevent the development of obesity induced by
high-fat diet as well as restore gut microbiota dys-
biosis in rats [77]. Other lipid improving effect of
betacyanins extract from red pitaya has also shown
a negative regulation of Firmicutes; increase the
relative abundance of Akkermansia [78].
It was reported that most of dietary polyphenols

reached the large intestine, where they are exten-
sively digested by colon microbiota (e.g Bifido-
bacterium) into simple phenolic compounds, such
as phenolic acid. As such, they are absorbed into

Fig. 2. Crosstalk between the obesity, gut microbiota, and phenolic
compounds. The gut microbiota was emerging as a key environmental
factor, producing certain secondary metabolites through digestion of
phenolic compounds with the consequence of influencing obesity
development.

Table 3. Summary of the impact of phenolic acid on anti-obesity effects.

Phenolic acids Structures Subjects Main Finding References

Gallic acid male C57BL/6 mice (HFD) Yfinal body weight [96]

Vanillic acid male C57BL/6 mice (HFD) Yfinal body weight, WAT weight, liver
weight

Yliver tissue lipid size, WAT tissue lipid
size

[BAT weight
Yserum LDL/TG/cholesterol/FFA

[97]

male db/db mice Yfinal body weight, eWAT weight,
iWAT weight

[BAT weight
Yserum LDL/cholesterol

3T3-L1 cells

YMDI-Induced adipogenesis
Caffeic acid male C57BL/6 mice (HFD) Yfinal body weight

Yserum TG/cholesterol/FFA/FAS
activity

Yliver TG/cholesterol

[98]

Cinnamic acid male Rat (HFD) Yfinal body weight
Yserum TG/cholesterol/LDL-C/leptin/

lipase activity
[serum HDL-C

[99]

Ferulic acid male Swiss mice (HFD) Yfinal body weight, abdominal fat
weight

Yserum TG/cholesterol/leptin/amylase
activity/lipase activity/insulin

YEAT lipid size

[100]

Curcumin 3T3-L1 cells [p-AMPK, p-ACC
[fatty acid oxidation

[101]

male C57BL/6 mice (HFD) Yfinal body weight, body fat weight,
liver weight
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blood circulation by the portal vein that may have
effect on peripheral tissue and contributed to local
and systemic health [14,79]. Taken into account the
phenol-derived microbial metabolites obtained
from parents compounds such as epigallocatechin
gallate (EGCG), chlorogenic acid, anthocyanins, and
procyanidins which were reported to determine
specific gut microbiota species that generates cata-
lytic abilities to processing phenolic structure and
consequently provided an antibacterial properties
[80]. For example, degradation of polymers into
oligomers and the gallate esters of EGCG convert

into pyrogallol by decarboxylation, which is further
enhancing the growth of Bifidobacterium and clos-
tridium. From anthocyanins, gallic acid, and syrin-
gic acid are produced by Lactobacteria and
Bifidobacteria that may responsible for increasing
the population of Bifidobacterium species [81,82]. In
summary, theses evidences revealed that the
changes of microbiota upon phenolic compounds
supplementation which may correlate with its bio-
metabolites advantages.
Collectively, several features of dietary phyto-

chemicals have been previously investigated in the

Table 4. Summary of the impact of flavonoids on anti-obesity effects.

Flavonoids Structures Subjects Main Finding References

Quercetin male C57BL/6 mice (HFD) Yfinal body weight, EAT weight,
SAT weight

YEAT adipocyte size
Yserum leptin
[EAT p-AMPK, SIRT1
[BAT Ucp1

[102]

Isorhamnetin 3T3-L1 cells Y3T3-L1 adipocyte differentiation
YPPAR-g, C/EBP-a, Krox 20, PGC-

1, Adiponetin

[109]

Myricetin male C57BL/6 mice (HFD) Yfinal body weight, EAT weight,
SAT weight, PAT weight

YEAT adipocyte size
Yserum TG/leptin/TNF-a/insu-

lin/MDA
[serum adiponectin/GPX/T-

AOC
YEAT PPARg, C/EBPa, SREBP-1c

[103]

Kaempferol male C57BL/6 mice (HFD) Yfinal body weight, EAT weight,
VAT weight, PAT weight

Yserum TG/insulin/leptin
Yliver TG
[liver FAS activity
Yliver PPARg

[104]

Epicatechin male C57BL/6 mice (HFD) Yfinal body weight
Yserum TG/FFA/insulin/leptin
Yliver p-IKKa, p-JNK, PTP1B
YEAT p-IKKa, p-JNK, PTP1B

[105]

Daidzein male ICR mice (HFD) Yfinal body weight, EAT weight,
MAT weight, PAT weight,
SAT weight

Yplasma cholesterol/LDL-C/FFA
[plasma HDL-C
Yliver cholesterol/FFA

[106]
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literature, including the modulation of brown and
beige adipose tissue recruitment and metabolism.
Hence, the phenolic compounds that are digested/
absorbed by gut microbiota showed the potential
effects on healthy status due to their bioactivities.
Intriguingly, the bioavailable proportion is a trian-
gular relationship between dietary ingredients,
human healthy, and gut microbial ecosystem
(Fig. 2). However, the precise mechanisms respon-
sible for the metabolic improvement of bioactive
compounds have not yet been clearly elucidated,
and are needed further investigation.

5. Phenolic compounds and obesity

According to structure properties, phenols are
further divided into phenolic acids, flavonoids, stil-
benes and lignans, which are distributed in fruits
and vegetables of plant sources. Biological activities
of phenolic substances have been studied exten-
sively in recent years. Numerous epidemiological
studies suggest that the consumption of phenolic-
rich foods may reduce the incidence of chronic
diseases, including obesity and obesity-related
complications such as insulin resistance, gastroin-
testinal abnormalities, and dyslipidaemia [83,84].
Evidence from cellular study demonstrated that
certain dietary polyphenols (catechins, EGCG,
resveratrol, and curcumin) reduced adipocytes
viability, proliferation, and differentiation, and
shows further antioxidant effect and increased
lipolysis [85e87]. Moreover, tea polyphenols was
demonstrated to dose dependently retard body
weight gain and fat accumulation in high-fat diet
induced animal model. There is also evidence of
population-based cohort studies by which

polyphenols contained food protect against the
incident of obesity that may associated with
nutrient-dense source of polyphenol intake rather
than energy-dense, which eventually lead to a
reduction of calorie intake. Compelling evidence
elucidated a significant correlation of flavonoids
between obesity and weight management [88].
Green tea catechin, such as EGCG shows strong

anti-oxidant and anti-obesity effects by increasing
lipolysis, promoting energy expenditure and inhibit
appetite, though weight management have been
proposed to be a coefficient with caffeine intake by
conducting meta-analysis of cohort study [89].
Among the compounds of plants, including gin-
gernone A, quercetin, piceatannol, and cinnamon
polyphenol extract has been described as suppres-
sor to adipogenesis, inhibited adipose tissue
inflammation through modulation of signaling
pathway in high-fat diet-induced obese animal
model [90e93]. Recently, microRNA (miRNAs) are
found to closely correlate with obesity related in-
flammatory response through the regulation of
miR-221, miR-222, and miR-155 and subsequently
increased IL-6 and TNF-a expression [94]. Similar
effects appear to be present for proanthocyanidins
extracts also demonstrated to have inhibitory effects
on lipogenesis by suppressing the hepatic lipid
regulatory miR-122 in obese rat [95].
Although the anti-inflammatory and antioxidant

activities of intervention studies suggest prevention
effect related to obesity in phenols compounds
consumption, they must be complete understanding
in the maintenance of health status and beneficial
level of intake. Excepted for these evidences
mentioned before, Tables 3e5 categorizing studies
based on phenolic acid, flavonoids, and other

Table 5. Summary of the impact of other phenolic compounds on anti-obesity effects.

Other phenolic
compounds

Structures Subjects Main Finding References

Piceatannol male C57BL/6

mice (HFD)

Yfinal body weight, PAT weight, RAT
weight

YPAT adipocyte size
Yserum cholesterol
[serum HDL-C
[liver pAMPKa, pACC
Yliver PPARg, C/EBPa, FAS

[107]

Tannic acid 3T3-L1 cells Yadipogenesis
Y PPARg, FAS

[108]
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phenolics that showed an anti-obesity effect and
involved several signal transductions and elicit
cellular responses, subsequently lead to body
weight loss [96e109]. Although such phenol-base
studies have wildly investigated, the dose variation
and treatment frequency in-vivo and in-vitro still
needed to be further confirmed.

6. Conclusion

This narrative review showed a comprehensive
view of the preventive role of phenolic compounds
in the obesity development through modulating gut
microbiota. Dietary habit and modest lifestyle play a
crucial role for the prevention and management of
obesity. Growing evidences suggested the role of
dietary change and secondary lifestyle in obesity
prevention. Although the energy restriction is the
most common way to manage obesity, bioactive
compounds in native plants, such as phenols, shows
its antiobesity properties. There is substantial evi-
dence to support the effects of gut microbiota
composition for the catabolism and absorption of
bio-metabolites derived from dietary phenols.
Moreover, the overall composition of microbiota at
baseline might modulate gut microbiota diversity
after dietary intervention. Studies in vitro and in vivo
have used to reveal the benefit effects of phenolic
compound amount dietary patterns as well as
regulated gut microbiota ecology. Concerning the
multitude of phenolic compounds, with its structure
complexity, resident of absorption and catalytic
roles in gut microbiota that make it need deeper
insight into detail mechanism, and further human
clinical trial are needed to elucidate the safety and
health-promoting implications.
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