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a b s t r a c t

Fatty acids play critical roles in biological systems. Imbalances in fatty acids are related to a

variety of diseases, which makes the measurement of fatty acids in biological samples

important. Many analytical strategies have been developed to investigate fatty acids in

various biological samples. Due to the structural diversity of fatty acids, many factors need

to be considered when developing analytical methods including extraction methods,

derivatization methods, column selections, and internal standard selections. This review

focused on gas chromatography-mass spectrometry (GCeMS)-based methods. We

reviewed several commonly used fatty acid extraction approaches, including liquideliquid

extraction and solid-phase microextraction. Moreover, both acid and base derivatization

methods and other specially designed methods were comprehensively reviewed, and their

strengths and limitations were discussed. Having good separation efficiency is essential to

building an accurate and reliable GCeMS platform for fatty acid analysis. We reviewed the

separation performance of different columns and discussed the application of multidi-

mensional GC for improving separations. The selection of internal standards was also

discussed. In the final section, we introduced several biomedical studies that measured

fatty acid levels in different sample matrices and provided hints on the relationships be-

tween fatty acid imbalances and diseases.
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1. Introduction

Fatty acids are essential molecules in biological systems and

have several important biological functions, including being

constituents of cell membranes and regulating the activity of

enzymes and inflammatory processes. Studies have indicated

that imbalances in fatty acids are associated with a wide va-

riety of diseases, such as inflammation [1e3], cardiovascular

disease [4e6], tumorigenesis [7e10] and Alzheimer’s disease

[11,12]. As fatty acids play critical roles in biological systems,

many studies have analyzed fatty acids in various biological

samples, such as plasma, skin, urine, and tissue samples,

using a variety of analytical strategies [13e16].

Fatty acids are carboxylic acids with either saturated or

unsaturated aliphatic chains. They can be divided into four

groups, namely, short-chain fatty acids (<C6), medium-chain

fatty acids (C6eC12), long-chain fatty acids (C13eC21) and

very-long-chain fatty acids (�C22), according to the chain

length. In addition, fatty acids may contain different numbers

of double bonds in their aliphatic chain at different positions,

which results in large families of isomeric fatty acids, e.g.,

geometric isomers and structural isomers. In biological sys-

tems, although fatty acids can be present in their free fatty

acid (FFA) forms, they most often exist in bound forms, such

as cholesterol and phospholipids. The total fatty acids

included FFAs and bound fatty acids. Analytical tools,

including gas-chromatography mass spectrometry (GCeMS),

gas-chromatography with flame ionization detection (GC-

FID), and liquid-chromatography mass spectrometry (LC-MS),

have been used to perform fatty acid analyses [10,17,18]. LC-

MS methods for fatty acid analysis showed some disadvan-

tages such as larger solvent consumption and lower selec-

tivity [19,20]. Compared to GC-FID, GCeMS could providemore

structural information [21,22]. Moreover, GCeMS has well-

established databases for FA identification with higher effi-

ciency and better selectivity compared to GC-FID. As a result,

GCeMS is the most frequently used method for fatty acid

analysis. This article reviewed the GC-MS-based methods

used for fatty acid analysis in terms of their sample prepara-

tion methods, column selection, and recent applications in

biomedical studies.

2. Sample preparation

2.1. Extraction methods

Generally, GC-MS-based analytical methods for fatty acid

analysis included three steps: (1) extraction of the fatty acids

from the sample matrix, (2) derivatization of the fatty acids,

and (3) GCeMS analysis. There are various well-established

extraction protocols, and generally, these extraction methods

could be applied to different types of samples; however, to

achieve the best performance for specific target analytes, some

method optimization is required. Sincemany parameters such

as instrumental settings would affect the method perfor-

mance, we did not provide quantitative comparison for

different extraction methods. In the following section, we

briefly introduce the frequently used extraction methods.

2.1.1. Liquideliquid extraction
Liquideliquid extraction methods are frequently used in fatty

acid analysis using different combinations of organic sol-

vents. Themostwell-known liquid-based fatty acid extraction

methods adopted in biomedical fields are those proposed by

Folch et al. [23] and Bligh andDyer [24]. Folch used amixture of

chloroform and methanol at a ratio of 2:1 (v/v) as the extrac-

tion solvent and a final volume of 20 times the volume of the

tissue sample (1 g in 20 mL of solvent mixture). Then, water or

a salt solution (e.g., 0.9% NaCl solution) was added to cause

phase separation. The lower phasewas then collected for fatty

acid analysis. Folch extraction is considered the gold standard

method for lipid extraction. The method described by Bligh

and Dyer is also widely used in fatty acid analysis, and it was

first developed as an extraction approach for determining the

total lipid content in fish muscle. This method is usually

applied to biological samples (e.g., tissue and blood) that

contains ~80% water in the sample, and used chloroform/

methanol/water for extraction to achieve a final ratio with

chloroform/methanol/water 2:2:1.8. This method offers the

advantage of low solvent consumption while still providing

high recovery. However, using chloroform as part of the

extraction solvent is a concern due to its high toxicity, making

this method poorly suited for large-scale applications [25].

Therefore, other extraction solvents have been used to replace

chloroform [24,26]. For example, one study proposed the use

of methyl-tert-butyl ether (MTBE), and they claimed that this

method provided faster and cleaner lipid extraction [27]. The

overall recoveries achieved by MTBE method were 90e98%,

which is similar to Folch method. The only one exception was

phosphatidylinositol (PI) standard which showed higher re-

covery by MTBE. In addition, Hara and Radin have proposed a

lipid extraction approach using the low toxicity solvents

hexane and isopropanol [28]. This approach was applied to

both plasma and erythrocytes samples, and was shown to

provide higher extraction recovery for total FA compared to

the Bligh and Dyermethod,moreover, the sample preparation

time of this method is comparatively shorter whichmade this

method be more efficient [29,30]. Another chloroform free

lipid extraction method, butanol:methanol (BUME) method,

was also used for extracting FA. This method included an

initial one-phase extraction with 300 mL butanol:methanol

(3:1) mixture followed by a two-phase extraction with 300 mL

heptane:ethyl acetate (3:1) and 300 mL 1% acetic acid [31]. Since

BUME did not use chloroform for extraction, this method is

more environment-friendly and also less toxic. If there is a

specific requirement to analyze FFAs from biological samples,

further isolation procedures (e.g., lipid fractionation) or a

specific extraction approach may be necessary [32]. For

example, Han et al. used both potassium hydroxide/methanol

and hexane to separately extract esterified fatty acids and

FFAs from plasma samples [33]. This approach could be used

to determine both FFAs and esterified fatty acids with a small

volume of samples. Alternatively, FFAs could be specifically

isolated using a solid-phase extraction (SPE) approach (with

aminopropyl-silica cartridges) or solid-phase microextraction

(SPME), which are introduced in the following section [34].

Some studies have applied an additional saponification step

after lipid extraction to separate FA from other lipids by
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cleaving the ester bond between the fatty acid moiety and the

glycerol part [35,36].

To improve extraction speed or reduce solvent consump-

tion, somemodified approaches have been proposed. Liu et al.

used ultrasonic-assisted extraction (UAE) to extract fatty acids

from tissue samples [37]. They evaluated their extraction

procedure in the extraction of 16 FFAs from liver samples.

They optimized the parameters of extraction time, extractant

volume and ultrasound power level. The recoveries of this

method ranged from 87 to 120%, and their results indicated

that this method was comparable to conventional

liquideliquid extraction method but with the advantage of

being more environmentally friendly due to the lower solvent

consumption. The microwave-assisted extraction (MAE)

approach has the advantages of being fast and robust and

consuming a small amount of solvent. Several studies have

used MAE to extract fatty acids from biological samples

[38e40]. Costa et al. developed and validated an MAE method

for lipid extraction from fish samples [40]. Their result showed

that the contents of each fatty acid and the total lipid contents

were similar between Folch and MAE method. They indicated

that compared to the Folch method, MAE is a relatively fast

and robust technique with lower solvent consumption.

Although there were some concerns about the stability of the

fatty acids during microwave treatment, their results indi-

cated that there were no significant differences in the con-

tents of any of the fatty acids between the Folch extraction

method and MAE method.

2.1.2. Solid-phase microextraction
Solid-phase microextraction (SPME) has been used to extract

FFAs since 1995 [41]. SPME is a fast, simple and solvent-free

sample preparation approach. Fiorini et al. improved the ef-

ficacy of headspace SPME by using a salting out system, and

this method could measure both short-chain and medium-

chain fatty acids in the free form [42]. Sodium chloride

(NaCl) and sodium sulfate (Na2SO4) are commonly used

salting-out reagents in SPME systems. Fiorini et al. used a

combination of (NH4)2SO4/NaH2PO4 as the salting-out reagent

to improve the recovery for SPME. They used both biological

samples (rat feces) and food samples (cheese and wine) to

prove the applicability of the method and demonstrated the

improvement in sensitivity.

2.2. Derivatization methods

Derivatization is usually necessary for fatty acid analysis by

GCeMS, especially for fatty acids with carbon numbers larger

than 10. Fatty acids are commonly derivatized to form fatty

acid methyl esters (FAMEs), which are then detected by

GCeMS. In this section, we introduced themethods frequently

used for fatty acid derivatization. Generally, acid derivatiza-

tion methods can be applied to total fatty acids (including FFA

and esterified fatty acids); however, basic derivatization

methods are limited to esterified fatty acids [43].

2.2.1. Acid derivatization methods
The commonly used acid derivatization reagents are hydro-

chloric acid (HCl), acetyl chloride (CH3COCl), sulfuric acid

(H2SO4), and boron trifluoride (BF3). HCl derivatization is one of

themost commonly used fatty acid analysis methods because

of its operational simplicity [44,45]. In HCl derivatization,

methanolic HCl is added to the dried lipid extract, and the

solution is heated for a certain period. However, due to the

solubility of certain lipids in methanolic HCl, the addition of a

second solvent before the derivatization step may be neces-

sary [44]. The acetyl chloride derivatization method was

introduced in 1986 [46e48]. When using this method, acetyl

chloride is added to the sample containing methanol, and the

sample is generally heated at 95e100 �C for 60 min. After

derivatization, the samples are neutralized, and the FAMEs

are extracted with an organic solvent for further GC analysis.

Some potential problems and safety issues may need to be

considered when using the acetyl chloride derivatization

method. For example, acetyl chloride derivatization is an

exothermic reaction, causing the sample spill out of the vial,

which could be dangerous. In addition, some polyunsaturated

fatty acids (PUFAs) are relatively unstable at the high tem-

peratures required for derivatization, which could lead to

inaccurate quantification results [49]. The H2SO4 derivatiza-

tionmethod has also beenwidely used for the analysis of fatty

acids in biological samples [50,51]. The reaction procedure is

similar to that of other derivatizationmethods. Because H2SO4

is a strong oxidizing agent, this method is not recommended

for PUFA analysis [52]. The BF3 derivatizationmethodhas been

used for fatty acid analysis for the last several decades, and it

is now widely used for derivatizing various biological samples

[53e55]. This protocol has the advantage of a short reaction

time, and previous studies have shown that after adding the

BF3-methanol reagent, the reaction could be completedwithin

10 min. When using the BF3 derivatization method, the lipid

extract is first dissolved in an organic solvent. Generally, the

derivatization is performed by adding BF3-methanol reagent

(14%, w/v) and heating at 80e100 �C for 45e60min. Finally, the

FAMEs are extracted with an organic solvent and analyzed by

GC. Although the BF3method provides efficient derivatization,

its instability and the formation of artifacts have been sub-

jects of concern in several studies [56e58]. To summarize,

acidic derivatization approaches are commonly used for bio-

logical samples and have many advantages; however, the

potential for altering the isomer distribution of the conjugated

system remains a concern [57,59]. Stability evaluations for

each fatty acid are suggested prior to the application of these

techniques in biomedical analysis. Moreover, some of the

artifact formation during acid derivatization could be reduced

by avoiding using high reaction temperatures or amounts of

derivatization reagent, or adding some dimethyl sulfoxide

(DMSO) or dimethylformamide (DMF) during the reaction

[60e62].

In addition to being derivatized after lipid extraction, the

HCl, acetyl chloride, H2SO4 and BF3 derivatization methods

could also be used for one-step extraction-derivatization

approach [46,63e65]. Previous study has investigated the ef-

ficiencies of direct derivatization and conventional derivati-

zation procedures, including the extraction of the lipids by the

Folch method followed by derivatization. The results showed

that similar FAME profiles were obtained from the two ap-

proaches. Moreover, a higher recovery of the total FAMEs was
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achieved in the one-step approach [63]. This direct derivati-

zation, which bypassed the extraction steps, is especially

beneficial for large sample analyses in many clinical studies.

2.2.2. Basic derivatization methods
Basic derivatization methods offer the advantages of short

derivatization times, no double bond isomerization issue,

easy operation and uses less aggressive reagents, however,

they are not suitable for derivatizing FFAs [57,59,66e68]. The

sodium methoxide (NaOCH3) derivatization method has been

used in several studies [69,70]. Typically, 0.5 M NaOCH3 in

anhydrous methanol is added to the lipid extract, and the

solution is reacted at 45 �C for 5 min. NaHSO4 (15%) is then

added to neutralize the mixture. Finally, the FAMEs are

extracted with an organic solvent and analyzed by GC. Po-

tassium hydroxide (KOH) can also be used in basic derivati-

zationmethods. The protocol is quite simple, and the reaction

time is quite short [71]. When using KOH, methanolic KOH

(2 mol/L) is added to the lipid extract, and the mixture is

incubated at room temperature or heated to 50 �C for a few

minutes for fatty acid derivatization. Then, sodiumbisulfate is

added, and the supernatant is collected and analyzed by GC

[72].

2.2.3. Other derivatization methods
In addition to acid and basic derivatization methods, other

derivatization strategies have also been proposed. Trime-

thylsulfonium hydroxide (TMSH) allows rapid derivatization

in only one step without any further extraction and shows the

ability to reduce the artifact compared to the acidic derivati-

zation method [73,74]. This method has been used to investi-

gate the fatty acid profiles of neutral lipids, FFAs and

phospholipids in human plasma [75]. Due to the simplified

protocol, this method was useful for large batch analysis, but

the limit of the TMSHmethod is the insufficient derivatization

efficiency for PUFA [74,76]. For studies specifically interested

in free fatty acids, pentafluorobenzyl bromide (PFBeBr) is

recommended. This method converts fatty acids into halo-

genated derivatives, which can be easily detected by negative

chemical ionization (NCI) GCeMS [77]. The PFB-Br derivatiza-

tion method was first introduced by Kawahara in 1968 and

was specifically used for FFA analysis [78]. Briefly, a mixture

containing PFB-Br andN,N-diisopropylethylamine (DIPEA) at a

ratio of 1:1 is added to dried lipid extract. The derivatization is

performed at room temperature for 15e30 min and produces

the pentafluorobenzyl esters of fatty acids (PFBeFAs) [79].

Since numerous derivatization methods can be used for

fatty acid analysis, it is better to understand the pros and cons

of each method and to consider the limitations of the

methods. In addition, the derivatization conditions can be

optimized to meet the needs of a specific application. Oster-

mann et al. compared different fatty acid derivatization

methods, including TMSH derivatization, BF3 derivatization,

HCl derivatization, KOH derivatization, combined NaOH þ BF3
derivatization, and direct TMSH derivatization, with plasma

and tissue samples as well as fatty acid standards. The stan-

dards they used included saturated/unsaturated FFAs, phos-

phatidylcholine (PC), cholesterol ester (CE) and

triacylglycerols (TG) [72]. Their results indicated that each

method has its own limitations; for example, derivatization

with KOH has good efficiency for the fatty acids in PC and TG

but failed to derivatize the FFAs and fatty acids in CE. The

results of their comparison using plasma samples suggested

that MTBE/methanol extraction followed by HCl derivatiza-

tion was good for all the tested lipid classes. Our group also

compared different derivatization methods, including HCl

derivatization, H2SO4 derivatization, BF3 derivatization, acetyl

chloride derivatization, and sodiummethoxide derivatization,

for the analysis of fatty acids in human plasm samples [80].

Our results showed that acetyl chloride derivatization has

high derivatization efficiency and the lowest cost. We vali-

dated this method and then applied it to the investigation of

potential breast cancer biomarkers in plasma samples. The

results indicated that acetyl chloride derivatization provided

the advantages of good accuracy and precision, which is

important for clinical sample analysis [80]. In addition, we

used a modified acetyl chloride derivatization method to

achieve differential labeling by derivatization with unlabeled

(D0) or deuterated (D3) methanol of pooled control and pooled

test samples. Thismethod allows the efficient and economical

comparative analysis of fatty acids [81]. Selected fatty acid

derivatization methods and their reaction conditions are lis-

ted in Table 1 [10,13,22,33,36,44,46,47,50,69,70,75,79,82e99].

3. GC column selection

A suitable column with good separation is essential for

analyzing isomeric mixtures of fatty acids. Many columns

have been demonstrated to be effective for separating fatty

acids with different chain lengths, degrees of saturation,

double bond locations, and cis or trans isomers. High-polarity

columns such as HP-88 column (88% - cyanopropyl aryl-pol-

ysiloxane), DB-FFAP column (nitroterephthalic acid-modified

polyethylene glycol) and SLB-IL series columns (ionic liquids)

are commonly used for fatty acid analysis in biological sam-

ples [46,100,101]. Previous studies have indicated that ionic

liquid (IL) columns provide better selectivity than wax or

cyanopropylsiloxane columns for FAME mixtures. Moreover,

IL columns can separate geometric and positional fatty acid

isomers [102,103]. Zeng et al. characterized the FAME reten-

tion behaviors of various IL columns. They compared IL col-

umns including SLB-IL59, SLB-IL60, SLB-IL61, SLB-76, SLB-82,

SLB-100 and SLB-IL111 as well as a SLB-5ms. The total ion

chromatograms of C18 to C24 obtained from the different

columns are shown in Fig. 1, and the peak details are listed in

Table 2 [104] (Fig. 1 and Table 2 were adapted from Ref. [104]).

Several FAME geometric isomers, such as C18:2n6t and

C18:2n6c, could not be separated by a nonpolar column (SLB-

5ms), while better resolutions could be obtained on ionic se-

ries columns. In addition, imidazolium-based SLB-IL82, SLB-

IL100, and SLB-IL111 columns provided better resolution of

cis and trans isomers than phosphonium-based SLB-IL59, SLB-

IL60, SLB-IL61 and SLB-IL76 columns, which is consistent with

a previous report that IL columnswith an imidazolium instead

of a tripropylphosphonium moiety formed stronger in-

teractions with polar compounds, resulting in better selec-

tivity [104,105]. Weatherly et al. also compared several IL

columns. For the cis and trans separation, they used C18:2 as a

test standard, their result was similar to previous studies

j o u r n a l o f f o o d and d ru g an a l y s i s 2 8 ( 2 0 2 0 ) 6 0e7 3 63



T
a
b
le

1
e

S
e
le
ct
e
d
fa
tt
y
a
ci
d
d
e
ri
v
a
ti
za

ti
o
n
m

e
th

o
d
s
a
n
d
th

e
ir

re
a
ct
io
n
co

n
d
it
io
n
s.

D
e
ri
v
a
ti
za

ti
o
n

m
e
th

o
d

S
a
m

p
le

ty
p
e

A
n
a
ly
te

R
e
a
ct
io
n
co

n
d
it
io
n

R
ef
e
re
n
ce

H
y
d
ro

ch
lo
ri
d
e

b
lo
o
d

C
1
4
:0
,C

1
6
:0
,C
1
6
:1
,C

1
8
:0
,C

1
8
:1
,C

1
8
:2

n
-6
,C

1
8
:3

n
-3
,C

1
8
:4

n
-3
,C

2
0
:1
,C

2
0
:4

n
-6
,C

2
0
:4

n
-3
,
C
2
0
:5

n
-3
,
C
2
2
:1
,
C
2
1
:5

n
-3
,
C
2
2
:5

n
-3
,
C
2
2
:6

n
-3

4
5

� C
fo
r
1
6
h

[4
4
]

H
y
d
ro

ch
lo
ri
d
e

p
la
sm

a
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
1
8
:3
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:5
,
C
2
2
:6

8
0

� C
o
v
e
rn

ig
h
t

[8
2
]

H
y
d
ro

ch
lo
ri
d
e

p
la
sm

a
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
1
8
:3
,
C
2
0
:0
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:0
,
C
2
2
:6
,
C
2
4
:0
,

C
2
4
:1

8
5

� C
fo
r
4
5
m
in

[8
3
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
C
1
4
:0
,C

1
4
:1
,C

1
6
:0
,C

1
6
:1

n
-7
,C

1
8
:0
,C

1
8
:1

n
-7
,C

1
8
:1

n
-9
,C

1
8
:2

n
-6
,C

1
8
:3

n
-6
,C

1
8
:3

n
-

3
,C

2
0
:0
,C

2
0
:1

n
-9
,C

2
0
:2

n
-6
,C

2
0
:3

n
-6
,C

2
0
:4

n
-6
,C

2
0
:5

n
-3
,C

2
2
:0
,C

2
2
:4

n
-6
,C

2
2
:5

n
-

6
,
C
2
2
:5

n
-3
,
C
2
2
:6

n
-3
,
C
2
4
:0
,
C
2
4
:
1
n
9

1
0
0

� C
fo
r
1
h

[4
6
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
/f
e
ca

l/
b
il
e

C
1
2
:0
,C

1
4
:0
,C

1
4
:1

(n
-5
),
C
1
5
:0
,
C
1
6
:0
,C
1
6
:1

(n
-7
),
C
1
7
:0
,C

1
8
:0
,C

1
8
:1

(n
-9
),
C
1
8
:2

(n
-6
),

C
1
8
:3

(n
-3
),
C
2
0
:0
,
C
2
0
:1

(n
-9
),
C
2
0
:2

(n
-6
),
C
2
0
:3

(n
-6
),
C
2
0
:4

(n
-6
),
C
2
2
:0
,
C
2
2
:1

(n
-9
),

C
2
2
:4

(n
-6
),
C
2
2
:5

(n
-6
),
C
2
2
:6

(n
-3
),
C
2
4
:0
,
C
2
4
:1

(n
-9
),
C
2
6
:0

1
0
0

� C
fo
r
1
h

[4
7
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
/c
e
ll

h
o
m
o
g
e
n
a
te

C
8
:0
,
C
1
0
:0
,
C
1
1
:0
,
C
1
2
:0
,
C
1
3
:0
,
C
1
4
:0
,
C
1
4
:1
,
C
1
5
:0
,
C
1
5
:1
,
C
1
6
:0
,
C
1
6
:1

(n
�7

),
C
1
7
:0
,

C
1
7
:1
,
C
1
8
:0
,
C
1
8
:1

(n
�7

),
C
1
8
:1

(n
�9

),
C
1
8
:1

(n
�9

),
C
1
8
:2

(n
�6

),
C
1
8
:2

(n
�6

),
C
1
8
:3

(n
�6

),
C
1
8
:3

(n
�3

),
C
2
0
:0
,
C
2
0
:1

(n
�9

),
C
2
0
:2

(n
�6

),
C
2
0
:3

(n
�6

),
C
2
0
:3

(n
�3

),
C
2
0
:4

(n
�6

),
C
2
0
:4

(n
�3

),
C
2
0
:5

(n
�3

),
C
2
1
:0
,
C
2
2
:0
,
C
2
2
:1

(n
�9

),
C
2
2
:2

(n
�6

),
C
2
2
:4

(n
�6

),

C
2
2
:5

(n
�3

),
C
2
2
:6

(n
�3

),
C
2
3
:0
,
C
2
4
:0
,
C
2
4
:1

(n
�9

),
C
2
5
:0
,
C
2
6
:0
,
C
2
8
:0

9
5

� C
fo
r
1
h

[2
2
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
F
F
A

C
1
2
:0
,
C
1
6
:0
,
C
1
6
:1
-c
9
,
C
1
7
:0
,
C
1
8
:0
,
C
1
8
:1

(n
-9
),
C
1
8
:2

(n
-6
),
C
1
8
:3

(n
-3
),
C
2
0
:0
,

C
2
0
:4

(n
-6
),
C
2
2
:0
,
C
2
4
:0

o
v
e
rn

ig
h
t
a
t
2
0

� C
[1
3
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
1
8
:3
,
C
2
0
:3
,
C
2
0
:4
,
C
2
2
:6
,
C
2
4
:0
,
C
2
4
:1

1
0
0

� C
fo
r
1
h

[8
4
]

A
ce

ty
lc
h
lo
ri
d
e

d
ri
e
d
b
lo
o
d
sp

o
ts

C
8
:0
,
C
1
0
:0
,
C
1
0
:1
,
C
1
4
:1
,

4
5
m
in

a
t
ro

o
m

te
m
p
e
ra
tu

re
.

[8
5
]

A
ce

ty
lc
h
lo
ri
d
e

p
la
sm

a
C
1
4
:0
,
C
1
6
:0
,
C
1
8
:0
,
C
2
0
:0
,
C
2
2
:0
,
C
2
4
:0
,
C
2
6
:0
,
C
1
4
:1
n
-5
,
C
1
6
:1
n
-7
,
C
1
8
:1
n
-7
,
C
1
8
:1
n
-9
,

C
2
0
:1
n
-9
,
C
2
2
:1
n
-9
,
C
2
4
:1
n
-9
,
C
1
8
:2
n
-6
,
C
1
8
:3
n
-6
,
C
2
0
:2
n
-6
,
C
2
0
:3
n
-6
,
C
2
0
:4
n
-6
,

C
2
2
:2
n
-6
,
C
2
2
:4
n
-6
,
C
2
2
:5
n
-6
,
C
1
8
:3
n
-3
,
C
2
0
:3
n
-3
,
C
2
0
:5
n
-3
,
C
2
2
:5
n
-3
,
C
2
2
:6
n
-3
,

C
2
0
:3
n
-9
,
C
1
8
:1
n
-9
t,
C
1
8
:2
n
-6
t,
C
1
6
:1
n
-7
t,
C
1
6
:1
n
-9
,
9
c1

1
t-
C
L
A

1
0
0

� C
fo
r
1
h

[8
6
]

S
u
lf
u
ri
c
a
ci
d

p
la
sm

a
C
1
0
:0
,
C
1
2
:0
,
C
1
4
:0
,
C
1
4
:1
,
C
1
6
:0
,
C
1
6
:1
n
-9
,
C
1
8
:0
,
C
1
8
:1

n
-9
,
C
1
8
:
1
n
-1
1
,
C
1
8
:2

n
-6
,

C
1
8
:3

n
-3
,
C
2
0
:0
,
C
2
0
:1
,
C
2
0
:4

n
-6
,
C
2
0
:5

n
-3
,
C
2
2
:0
,
C
2
2
:
5
n
-3
,
C
2
2
:6

n
�3

,
C
2
4
:0

5
0

� C
fo
r
1
5
m
in

[5
0
]

S
u
lf
u
ri
c
a
ci
d

se
ru

m
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
g
-C

1
8
:3
,
C
2
0
:2
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:5
,
C
2
2
:6
,

C
2
4
:0
,
C
2
4
:1

6
2

� C
fo
r
2
h

[8
7
]

S
u
lf
u
ri
c
a
ci
d

p
la
sm

a
F
F
A
:
C
1
2
:0
,
C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
n
-9
,
C
1
6
:1
n
-7
,
C
1
8
:0
,
C
1
8
:1
n
-7
,
C
1
8
:1
n
-9
,
C
1
8
:2
,

C
1
8
:3
n
-3
,
C
1
8
:3
n
-6
,
C
2
0
:0
,
C
2
0
:3
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:4
,
C
2
2
:5
,
C
2
2
:6
,
C
2
4
:0

7
0

� C
fo
r
3
0
m
in

[8
8
]

S
u
lf
u
ri
c
a
ci
d

se
ru

m
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
g
-C

1
8
:3
,
C
1
8
:3
,
C
2
0
:2
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:5
,

C
2
2
:6
,
C
2
4
:0
,
C
2
4
:1

6
2

� C
fo
r
2
h

[8
9
]

S
u
lf
u
ri
c
a
ci
d

se
ru

m
C
1
2
:0
,
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
n
9
þ

C
1
6
:1
n
7
,
C
1
7
:0
,
C
1
7
:1
n
1
0
,
C
1
8
:0
,
C
1
8
:1
n
9
t,
C
1
8
:1
n
9
c,

C
1
8
:1
n
7
,t
9
,t
1
2
C
1
8
:2
,c

9
,t
1
2
C
1
8
:2
,t
9
,c

1
2
C
1
8
:2
,c

9
,c

1
2
C
1
8
:2
,t
9
,t
1
2
,t
1
5
C
1
8
:3
,t
9
,t
1
2
,

c1
5
C
1
8
:3

þ
t9
,c
1
2
,
t1
5
C
1
8
:3
,
c9

,t
1
2
,
t1
5
C
1
8
:3

þ
c9

,c
1
2
,
t1
5
C
1
8
:3
,
c9

,t
1
2
,
c1

5
C
1
8
:3
,

t9
,c
1
2
,
c1

5
C
1
8
:3
,
c9

,c
1
2
,
c1

5
C
1
8
:3
,
C
2
0
:0
,
C
2
0
:1
n
9
,
C
2
0
:2
n
6
,
C
2
0
:3
n
6
,
C
2
2
:0
,
C
2
0
:4
n
6
,

C
2
2
:2
n
6
,
C
2
0
:5
n
3
,
C
2
2
:4
n
6
,
C
2
2
:5
n
3
,
C
2
6
:0
,
C
2
2
:6
n
3

7
0

� C
fo
r
3
0
m
in

[9
0
]

S
u
lf
u
ri
c
a
ci
d

p
la
sm

a
C
1
0
:0
,
C
1
2
:0
,
C
1
4
:0
,
C
1
6
:1
n
-9
,
C
1
6
:0
,
C
1
8
:2
,
C
1
8
:1
n
-9
,
C
1
8
:1
n
-1
1
,
C
1
8
:0
,
C
2
0
:4
,
C
2
0
:5
,

C
2
0
:3
,
C
2
0
:2
,
C
2
0
:0
,
C
2
2
:6

7
0

� C
fo
r
3
0
m
in

[3
3
]

S
u
lf
u
ri
c
a
ci
d

se
ru

m
C
1
2
:0
,
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,g
-C

�1
8
:3
,
C
1
8
:3
,
C
2
0
:2
,
C
2
0
:4
,
C
2
0
:5
,

C
2
2
:4
,
C
2
2
:5
,
C
2
2
:6
,
C
2
4
:0
,
C
2
4
:1

6
2

� C
fo
r
2
h

[1
0
]

S
u
lf
u
ri
c
a
ci
d

p
la
sm

a
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
1
8
:3
,
C
2
0
:3
,
C
2
0
:4
,
C
2
1
:0
,
C
2
2
:6
,
C
2
3
:0

5
0

� C
fo
r
1
8
h

[9
1
]

B
o
ro

n
tr
ifl
u
o
ri
d
e

ti
ss
u
e

C
1
6
:0
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
2
0
:4
,
C
2
2
:5
,
C
2
2
:6

9
0
e
1
1
0

� C
fo
r
1
h

[9
2
]

j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 8 ( 2 0 2 0 ) 6 0e7 364



B
o
ro

n
tr
ifl
u
o
ri
d
e

p
la
sm

a
C
1
0
:0
,
C
1
2
:0
,
C
1
3
:0
,
C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
7
:1
,
C
1
8
:0
,
C
1
8
:1
n
9
t,
C
1
8
:1
n
9
c,

C
1
8
:2
n
6
t,
C
1
8
:2
n
6
c,

C
1
8
:3
n
6
,
C
1
8
:3
n
3
,
C
2
0
:0
,
C
2
0
:1
,
C
2
0
:2
,
C
2
0
:3
n
6
,
C
2
0
:4
n
6
,
C
2
0
:5
n
3
,

C
2
2
:0
,
C
2
2
:1
n
9
,
C
2
2
:4
,
C
2
2
:5
n
6
,
C
2
2
:5
n
3
,
C
2
2
:6
n
3
,
C
2
3
:0
,
C
2
4
:0
,
C
2
4
:1

7
5

� C
fo
r
4
5
m
in

[9
3
]

B
o
ro

n
tr
ifl
u
o
ri
d
e

p
la
sm

a
C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
n
-7
,
C
1
7
:0
,
C
1
8
:0
,
C
1
8
:1
n
-9
,
C
1
8
:2
n
-6
,
C
1
8
:3
n
-3
,
C
2
0
:0
,

C
2
0
:1
n
-9
,C

2
0
:2
n
-6
,C

2
0
:3
n
-6
,C

2
0
:4
n
-6
,C

2
0
:5
n
-3
,C

2
2
:0
,C

2
2
:1
n
-9
,C

2
2
:4
n
-6
,C

2
2
:5
n
-3
,

C
2
2
:6
n
-3
,
C
2
4
:0
,
C
2
4
:1
n
-9

1
0
0

� C
fo
r
1
h

[9
4
]

B
o
ro

n
tr
ifl
u
o
ri
d
e

p
la
sm

a
C
2
0
:5
n
-3
,
C
2
2
:5
n
-3
,
C
2
2
:6
n
-3
,
C
2
0
:4
n
-6

1
0
0

� C
fo
r
1
0
m
in

[3
6
]

S
o
d
iu
m

m
e
th

o
x
id
e

p
la
sm

a
C
1
4
:0
,C

1
6
:0
,C

1
6
:1
n
-7
,
C
1
7
:0
,C

1
8
:0
,C

1
8
:1
n
-7
,C

1
8
:1
n
-9
,C

1
8
:2
n
-6
,
C
1
8
:3
n
-6
,C

1
8
:3
n
-3
,

C
2
0
:0
,
C
2
0
:1
n
-9
,
C
2
0
:2
n
-6
,
C
2
0
:3
n
-6
,
C
2
0
:3
n
-9
,
C
2
0
:4
n
-6
,
C
2
0
:5
n
-3
,
C
2
2
:0
,
C
2
2
:4
n
-6
,

C
2
2
:5
n
-6
,
C
2
2
:5
n
-3
,
C
2
2
:6
n
-3
,
C
2
4
:0
,
C
2
4
:1
n
-9

ro
o
m

te
m
p
e
ra
tu

re
fo
r
3
m
in

[6
9
]

S
o
d
iu
m

m
e
th

o
x
id
e

p
la
sm

a
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
n
-7
,
C
1
8
:0
,
C
1
8
:1
n
-7
,
C
1
8
:1
n
-9
,
C
1
8
:2
n
-6
,
C
1
8
:3
n
-6
,
C
1
8
:3
n
-3
,

C
2
0
:3
n
-6
,
C
2
0
:4
n
-6
,
C
2
0
:5
n
-3
,
C
2
2
:5
n
-3
,
C
2
2
:6
n
-3

4
5

� C
fo
r
5
m
in

[7
0
]

P
o
ta
ss
iu
m

h
y
d
ro

x
id
e

b
lo
o
d

C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
7
:1
,
C
1
8
:0
,
C
1
8
:1
n
9
c,

C
1
8
:1
n
9
t,
C
1
8
:2
n
6
,
C
1
8
:3
n
6
,

C
2
0
:0
,
C
2
0
:1
,
C
2
0
:2
,
C
2
0
:3
n
3
,
C
2
0
:4
n
6
,
C
2
2
:6
n
3

5
0

� C
fo
r
2
0
m
in

[9
6
]

P
o
ta
ss
iu
m

h
y
d
ro

x
id
e

p
la
sm

a
C
1
2
:0
,
C
1
4
:0
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
n
-9
,
C
1
6
:1
n
-7
,
C
1
8
:0
,
C
1
8
:1
n
-7
,
C
1
8
:1
n
-9
,
C
1
8
:2
,

C
1
8
:3
n
-3
,
C
1
8
:3
n
-6
,
C
2
0
:0
,
C
2
0
:3
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:4
,
C
2
2
:5
,
C
2
2
:6
,
C
2
4
:0

ro
o
m

te
m
p
e
ra
tu

re
fo
r
1
0
m
in

[8
8
]

P
o
ta
ss
iu
m

h
y
d
ro

x
id
e

se
ru

m
C
1
2
:0
,
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
n
9
þ

C
1
6
:1
n
7
,
C
1
7
:0
,
C
1
7
:1
n
1
0
,
C
1
8
:0
,
C
1
8
:1
n
9
t,
C
1
8
:1
n
9
c,

C
1
8
:1
n
7
,t
9
,t
1
2
C
1
8
:2
,c

9
,t
1
2
C
1
8
:2
,t
9
,c

1
2
C
1
8
:2
,c

9
,c

1
2
C
1
8
:2
,t
9
,t
1
2
,t
1
5
C
1
8
:3
,t
9
,t
1
2
,

c1
5
C
1
8
:3

þ
t9
,c
1
2
,
t1
5
C
1
8
:3
,
c9

,t
1
2
,
t1
5
C
1
8
:3

þ
c9

,c
1
2
,
t1
5
C
1
8
:3
,
c9

,t
1
2
,
c1

5
C
1
8
:3
,

t9
,c
1
2
,
c1

5
C
1
8
:3
,
c9

,c
1
2
,
c1

5
C
1
8
:3
,
C
2
0
:0
,
C
2
0
:1
n
9
,
C
2
0
:2
n
6
,
C
2
0
:3
n
6
,
C
2
2
:0
,
C
2
0
:4
n
6
,

C
2
2
:2
n
6
,
C
2
0
:5
n
3
,
C
2
2
:4
n
6
,
C
2
2
:5
n
3
,
C
2
6
:0
,
C
2
2
:6
n
3

ro
o
m

te
m
p
e
ra
tu

re
fo
r
1
0
m
in

[9
0
]

T
ri
m
e
th

y
ls
u
lf
o
n
iu
m

h
y
d
ro

x
id
e

p
la
sm

a
C
8
:0
,
C
1
0
:0
,
C
1
2
:0
,
C
1
3
:0
,
C
1
4
:0
,
C
1
4
:1
,
C
1
5
:0
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,

C
1
8
:3
,
C
2
0
:1
,
C
2
0
:2
,
C
2
0
:3
,
C
2
0
:4
,
C
2
0
:5
,
C
2
2
:5
,
C
2
2
:6

ro
o
m

te
m
p
e
ra
tu

re
fo
r
2
m
in

[7
5
]

P
e
n
ta
fl
u
o
ro

b
e
n
zy

l
b
ro

m
id
e

sa
li
v
a
ry

C
1
2
:0
,
C
1
4
:0
,
C
1
4
:1
,
C
1
5
:0
,
C
1
5
:1
,
C
1
6
:0
,
C
1
6
:1
,
C
1
7
:0
,
C
1
7
:1
,
C
1
8
:0
,
C
1
8
:1
,
C
1
8
:2
,
C
1
9
:0
,

C
2
0
:0
,
C
2
0
:3
,
C
2
0
:4
,
C
2
2
:0

ro
o
m

te
m
p
e
ra
tu

re
fo
r
3
0
m
in

[7
9
]

P
e
n
ta
fl
u
o
ro

b
e
n
zy

l
b
ro

m
id
e

p
la
sm

a
/s
e
ru

m
/r
e
d
b
lo
o
d
ce

ll
s

C
1
4
:0
,
C
1
4
:1
n
-5
,
C
1
6
:0
,
C
1
6
:1
n
-7
,
C
1
6
:1
n
-7
t,
C
1
8
:0
,
C
1
8
:1
n
-7
,
C
1
8
:1
n
-7
t,
C
1
8
:1
n
-9
,

C
1
8
:1
n
-9
t,
C
1
8
:2
n
-6
,9
,
C
1
8
:2
n
-6
t,
9
t,
C
1
8
:3
n
-3
,6
,9
,
C
1
8
:3
n
-6
,9
,1
2
,
C
2
0
:0
,
C
2
0
:1
n
-9
,

C
2
0
:2
n
-6
,9
,
C
2
0
:3
n
-6
,9
,1
2
,
C
2
0
:4
n
-6
,9
,1
2
,1
5
,
C
2
0
:5
n
-3
,6
,9
,1
2
,1
5
,
C
2
2
:0
,
C
2
2
:4
n
-

6
,9
,1
2
,1
5
,C

2
2
:5
n
-6
,9
,1
2
,1
5
,1
8
,C

2
2
:5
n
-3
,6
,9
,1
2
,1
5
,C

2
2
:6
n
-3
,6
,9
,1
2
,1
5
,1
8
,C

2
4
:0
,C

2
4
:1
n
9

ro
o
m

te
m
p
e
ra
tu

re
fo
r
1
5
m
in

[9
7
]

P
e
n
ta
fl
u
o
ro

b
e
n
zy

l
b
ro

m
id
e
.

p
la
sm

a
C
1
2
:0
,
C
1
4
:0
,
C
1
6
:0
,
C
1
6
:1
u
7
,
C
1
6
:1
u
9
,
C
1
8
:0
,
C
1
8
:1
u
7
,
C
1
8
:1
u
9
,
C
1
8
:2
u
6
,
C
1
8
:3
u
3
,

C
1
8
:3
u
6
,
C
2
0
:0
,
C
2
0
:3
u
6
,
C
2
0
:3
u
9
,
C
2
0
:4
u
6
,
C
2
0
:5
u
3
,
C
2
2
:1
u
9
,
C
2
2
:4
u
6
,
C
2
2
:5
u
3
,

C
2
2
:5
u
6
,
C
2
2
:6
u
3
,
C
2
4
:
1
u
9

ro
o
m

te
m
p
e
ra
tu

re
fo
r
3
0
m
in

[9
8
]

P
e
n
ta
fl
u
o
ro

b
e
n
zy

l
b
ro

m
id
e
.

p
la
sm

a
C
1
8
:3
n
-3
,
C
2
0
:5
n
-3
,
C
2
2
:5
n
-3
,
C
2
2
:6
n
-3

6
0

� C
fo
r
1
2
m
in

[9
9
]

j o u r n a l o f f o o d and d ru g an a l y s i s 2 8 ( 2 0 2 0 ) 6 0e7 3 65



Fig. 1 e A comparison of the separation performances of different columns. Total ion chromatograms of the C18 to C24

region by using (A) 5 m s (B) IL59 (C) IL60 (D) IL61 (E) IL76 (F) IL82 (G) IL100, and (H) IL111 columns (This figure is reprinted

from Ref. [104] with permission.)
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show that the cis and trans isomer of C18:2 could be baseline

separated on SLB-IL 59 and SLB-IL60. Moreover, this study

included SLB-IL 65 and SLB-IL 111 aswell; in the four evaluated

SLB-IL columns (SLB-IL 59, SLB-IL 60, SLB-IL 65, and SLB-IL 111)

only SLB-IL 65 failed to separate the C18:2 isomer [106]. To

summarize, high-polarity columns such as HP-88 column and

DB-FFAP column are capable to separate fatty acids with

different carbon chain length. Ionic liquid series columns

(especially SLB-IL82, SLB-IL 110, SLB-IL111) are especially

useful for separating fatty acid isomers.

3.1. Multidimensional GC

Multidimensional GC (MDGC) approaches, such as two-

dimensional GC (GC✕GC) and heart-cut MDGC, have recently

attracted substantial interest. MDGC could provide greater

resolving power and enhance peak capacity and sensitivity.

The GC✕GC technique has been used for determining fatty

acid components in several types of samples, including

cultured mammalian cells, animal tissue samples and lanolin

[35,107,108]. Zeng et al. demonstrated an integrated GC system

incorporating GC✕GC and MDGC for analyzing fatty acids in

fish oil and dairymilk fat samples [109]. They applied different

IL columns using MDGC to increase the number of isomeric

compounds identified. Compared to conventional 1D GC sys-

tems, this approach could provide more reliable data with a

relatively shorter analysis time. Payeur et al. used GC✕GC

system to identify fatty acid composition in insulin secreting

cells, and their results show that this system could largely

increase the number of identified fatty acids [35]. To sum-

marize, MDGC strategies have many advantages such as

shorter analytical time and improved separation which could

additional facilitate FA identification It is anticipated that

these techniques would be beneficial for fatty acid profiling in

complex biological samples.

4. Fatty acid internal standards

To acquire accurate and precise quantification results, inter-

nal standards are commonly used in biomedical analysis.

Since fatty acids are diverse compounds, using stable isotope

internal standards for each analyte is not cost effective and

the relevant compounds may not even be commercial avail-

able. In previous studies, fatty acids with an odd number of

carbons (such as C13:0, C17:0, C19:0 and C23:0) were

frequently applied as the internal standards [37,48,76,110].

These fatty acids are not endogenous compounds and thus

could be added during the sample preparation steps and used

to correct potential variations in the experiments.

5. Fatty acid analysis in biological samples

Fatty acids play important roles in many biological systems.

Many studies have analyzed the fatty acid levels in various

biological samples, such as plasma, red blood cells, sweat, and

saliva. In the following section, we discuss several previous

studies that measured fatty acid levels in different types of

sample matrices, and list several dysregulated fatty acids in

different biological samples and the corresponding diseases in

Table 3.

5.1. Plasma samples

Plasma is themost frequently used sample type in biomedical

studies on fatty acids. Abdelmagid et al. analyzed 61 different

kinds of fatty acids in a large cohort (n¼ 826), and their results

provide foundational knowledge regarding a broad panel of

circulating fatty acids, which may be helpful for further fatty

acid-related biomedical studies [111]. Previous studies have

Table 2 e List of the peaks illustrated in Fig. 1 (This table is reprinted from ref. [104] with permission.)

Peak no. FAME compounds Abbreviations

1 Stearic acid C18:0

2 Elaidic acid t9-C18:1

3 Oleic acid c9-C18:1

4 Linolelaidic acid t9,t12-C18:2

5 Linoleic acid c9, c12-C18:2

6 g-Linolenic acid c6,c9,c12-C18:3

7 a-Linolenic acid c9,c12,c15-C18:3

8 Arachidic acid C20:0

9 cis-11-Eicosenoic acid c11-C20:1

10 cis-11,14-Eicosadienoic acid c11,c14-C20:2

11 cis-8,11,14-Eicosatrienoic acid c8,c11,c14-C20:3

12 cis-11,14,17-Eicosatrienoic acid c11,c14,c17-C20:3

13 Arachidonic acid (AA) c5,c8,c11, c14-C20:4

14 cis-5,8,11,14,17-Eicosapentaenoic acid (EPA) EPA

15 Heneicosanoic acid C21:0

16 Behenic acid C22:0

17 Erucic acid c13-C22:1

18 cis-13,16-Docosadienoic acid c13,c16-C22:2

19 cis-4,7,10,13,16,19-Docosahexaenoic (DHA) DHA

20 Tricosanoic acid C23:0

21 Lignoceric acid C24:0

22 Nervonic acid c15-C24:1
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discovered that fatty acid levels in plasma are closely related

to many diseases, such as metabolic syndromes, several

chronic diseases, Alzheimer’s disease, and cancer. In Table 3,

although various biological samples have been used to study

the relationship between dysregulated fatty acids and the

disease, plasma is still the most commonly used biological

sample. Table 3 summarizes the dysregulated fatty acids in

plasma/serum/blood samples and the corresponding diseases

[8,10,11,33,80,87e89,96,112e130]. Jordi et al. showed that

relative to healthy controls, higher levels of C14:0, C16:0, and

C16:1n-7 and lower levels of C18:2n-6 were observed in people

with metabolic syndromes [112]. Lv et al. indicated that the

concentrations of C14:0, C16:0, C18:0, C18:2, C18:3 and C20:5

were significantly different between breast cancer patients

and healthy controls [10].

5.2. Red blood cell (RBC) samples

Recently, many studies have investigated the fatty acid pro-

files of red blood cells [131e134]. Compared to plasma sam-

ples, the fatty acid compositions of red blood cell membranes

could reflect longer-term (up to 2e3 month) dietary intake

[135e137]. It has been found that the fatty acid profiles of red

blood cells are related to inflammation and several mental

diseases, such as schizophrenia and autism spectrum disor-

ders. Fontes et al. observed modest inverse associations be-

tween the levels of omega-3 fatty acid in the RBCs and several

inflammatory biomarkers [132]. Many studies have observed

the depletion of polyunsaturated fatty acids (PUFA) in eryth-

rocytes of schizophrenia patients [138,139]. Hoen et al. per-

formed a meta-analysis on the relationship between the

Table 3 e Selected examples of dysregulated fatty acids in biological samples and the associated diseases.

Disease Dysregulated fatty acid Sample Reference

Breast cancer C14:0, C16:0, C18:0, C18:2, C18:3 C20:5 serum [10]

Breast cancer C16:0, C18:0, C18:1n9c, C18:2n6, C20:0, C20:4n6, C22:0, C22:6n3, C24:0,

C24:1n9

plasma [80]

Breast cancer C14:0, C17:0, C18:1, C20:0 serum [113]

Breast cancer C18:2w6, C18:1n-7 serum [114]

Prostate cancer long-chain u-3 polyunsaturated fatty acids (20:5u3; 22:5u3; 22:6u3) plasma [115]

Prostate cancer C16:1n-7 blood [116]

Colorectal cancer PUFAs plasma [117]

Colorectal cancer PUFAs, C18:3n3, C18:2n6 plasma [118]

Lung cancer FFA: C20:4n6, C18:2n6 serum [8]

Lung cancer FFA: C16:1, C18:3, C18:2, C18:1, C20:4, C22:6 serum [119]

Pancreatic cancer n-3 fatty acid plasma [120]

Multiple myeloma saturated and n-6 polyunsaturated fatty acids plasma [121]

Normal aging and

neurodegenerative

diseases

C22:6n-3 blood [122]

Alzheimer’s disease/

Dementia/Cognitive

impairment

C20:5n-3, C22:6n-3, total n-3 fatty acids plasma [11]

Alzheimer’s disease C14:0, C16:0, C18:1, C18:3, C22:6 serum [87]

Alzheimer’s disease/Mild

cognitive impairment

FFA: oleic acid isomers and omega-6 fatty acids omega-3 fatty acids plasma [123]

Metabolic syndrome C14:0, C16:0, C16:1n-7, C18:2n-6 plasma [112]

Metabolic syndrome C16:1n-7, C20:4n-6, C22:5n-6 plasma [124]

Diabetes mega-6 polyunsaturated fatty acids (n-6PUFA), omega-3 polyunsaturated

fatty acid (n-3PUFA), C24:0

blood [125]

Diabetes C16:0, C18:0, C18:1n-9 plasma [88]

Diabetes C10:0, C14:0, C16:1n-9, C16:0, C18:2, C18:1, C18:0, C20:4, C20:5, C20:3, C20:2,

C22:6

plasma [33]

FFA: C10:0, C16:0, C18:2, C18:1, C18:3, C18:0, C20:4, C20:3, C20:2, C20:0,

C22:6

Diabetes FFA: C18:1, C18:2, C18:3 serum [89]

Heart failure FFA plasma [126]

Cirrhotic monounsaturated FA, n-6 polyunsaturated FA, n-3 polyunsaturated FA, plasma [127]

Liver disease the sums of nonessential/essential fatty acids,(n-7þn-9)/(n-3þn-6) plasma [128]

Nonalcoholic

steatohepatitis

C20:4, C22:6 plasma [129]

Ischemic stroke palmitoleic acid, linoleic acid plasma [130]

Dengue fever C14:0, C15:0, C16:1, C16:0, C18:3n6, C18:2n6, C18:1n9, C18:0, C20:4n6,

C20:3n3, C20:2, C22:6n3

blood [96]

Inflammatory omega-3 fatty acid red blood cell [132]

Schizophrenia PUFA red blood cell [138,139]

Schizophrenia C22:5n3, C22:6n3 and C20:4n6 red blood cell [134]

Sjogren’s syndrome FFA saliva [141]
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PUFAs measured in erythrocyte cell membranes and schizo-

phrenia and found that decreased levels of C22:5n3, C22:6n3

and C20:4n6 are associatedwith schizophrenia [134]. Bystrick�a

et al. reviewed the GC-based analytical approaches for fatty

acid analysis in human erythrocyte membranes [140]. This

review summarized the analytical strategies for erythrocyte

membranes, including erythrocyte membrane isolation, lipid

extraction, fatty acid derivatization and GC analysis.

5.3. Saliva samples

The concentrations of FFAs in saliva are thought to be associ-

ated with several diseases, such as cystic fibrosis and Sjogren’s

syndrome [141]. Kulkarni et al. used the PFB-Br derivatization

method to analyze salivary FFAs. They identified 16 FFAs in

human saliva samples and mentioned that the fatty acids in

the saliva included four major FFAs, C16:0, C18:2, C18:1, and

C18:0 [79]. Moon et al. used N-tert-butyldimethylsilyl-N-meth-

yltrifluoroacetamide (MTBSTFA) to derivatize fatty acids in

relatively small volumes (100 mL) of saliva samples [142]. In their

study, C12:0 and C14:0 were quantified in all samples, and

C16:1, C18:0, C18:1, and C18:2n6 could be quantified in >40% of

saliva samples. This optimized and validated method could be

used to investigate the FFA levels in small volumes of saliva.

6. Conclusion

Fatty acids play important roles in many biological systems,

and the dysregulation of fatty acids is associated with many

diseases. Accurate and efficient analytical methods are

essential for elucidating the mechanism of fatty acid

dysregulation-associated diseases and advancing the use of

these fatty acids as clinical therapeutic markers. This review

has summarized the commonly used GC-MS-based analytical

strategies for fatty acid analysis and their applications in

analyzing biological samples. There is no perfect approach for

all kinds of fatty acids and sample types. Not only the sample

type but also the properties of the target analyte must be

considered when developing analytical methods. More so-

phisticated analytical strategies for fatty acid analysis are

anticipated to provide a more comprehensive understanding

of the biological functions of these compounds and increase

their clinical usage.
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